
Avoiding	
 Forge,ulness:	
 Structured	

English	
 Specifica9ons	
 for	
 High-­‐Level	

Robot	
 Control	
 with	
 Implicit	
 Memory	

	

Vasu	
 Raman	

Bingxin	
 Xu	

Hadas	
 Kress-­‐Gazit	

(presented	
 by	
 Cameron	
 Finucane)	

	

Cornell	
 University	

• High-­‐level	
 robot	
 tasks	

	
 	
 	
 	
 	

MoFvaFon	

Patrol	
 the	

aisles!	

• High-­‐level	
 robot	
 tasks	

	
 	
 	
 	
 	
 →	
 No	
 guarantees!	

	
 	
 	
 	
 	

MoFvaFon	

???	

Patrol	
 the	

aisles!	

• High-­‐level	
 robot	
 tasks	

	
 	
 	
 	
 	
 →	
 No	
 guarantees!	

	

•  Synthesis	
 from	
 formal	

specificaFons	

	

	
 	
 	
 	
 	

MoFvaFon	

	
 	
 	
 	
 []<>r1	

&	
 []<>r2	

&	
 []<>r3	

	
 &	
 []<>r4!	

• High-­‐level	
 robot	
 tasks	

	
 	
 	
 	
 	
 →	
 No	
 guarantees!	

	

•  Synthesis	
 from	
 formal	

specificaFons	

	
 	
 	
 	
 	
 →	
 UnintuiFve!	

	

	
 	
 	
 	
 	

MoFvaFon	

	
 	
 	
 	
 []<>r1	

&	
 []<>r2	

&	
 []<>r3	

	
 &	
 []<>r4!	

• High-­‐level	
 robot	
 tasks	

	
 	
 	
 	
 	
 →	
 No	
 guarantees!	

	

•  Synthesis	
 from	
 formal	

specificaFons	

	
 	
 	
 	
 	
 →	
 UnintuiFve!	

	

•  IntuiFve	
 human	
 interface	

	

	

	
 	
 	
 	
 	

MoFvaFon	

Visit	
 all	

corners	

•  Structured	
 English	
 input	
 →	
 Correct	
 robot	
 control	

•  Grammar	
 allows:	

•  CondiFonals	
 (“if”,	
 “if	
 and	
 only	
 if”)	

•  LocaFve	
 preposiFons	
 (“between”,	
 “near”)	

•  Region	
 quanFfiers	
 (“any”,	
 “all”)	

•  Goals	
 (“visit	
 all	
 checkpoints”)	

•  Safety	
 requirements	
 (“avoid	
 the	
 kitchen”)	

Linear	
 Temporal	
 Logic	
 	

Mission	
 Planning	
 Toolkit	
 (LTLMoP)	

	

Cameron	
 Finucane,	
 Gangyuan	
 Jing,	
 and	
 Hadas	
 Kress-­‐Gazit.	
 	
 LTLMoP:	
 ExperimenFng	
 with	

language,	
 temporal	
 logic	
 and	
 robot	
 control,	
 IROS	
 2010.	

•  Structured	
 English	
 input	
 	

	
 →	
 Linear	
 Temporal	
 Logic	
 formulas	

	

•  Tied	
 Fghtly	
 to	
 underlying	
 formalism	
 (LTL	

fragment)	

	

LTLMoP	
 –	
 behind	
 the	
 scenes	

Linear	
 Temporal	
 Logic
•  Syntax:	

•  Temporal	
 operators:
next	
 step	

always	

eventually	

j ::= p | ¬j | j _j |�j |⇤j | ⇤j

Do memo order if and only if you are sensing order

or you were activating memo order

⇤(�m

order

() (�p
order

_m

order

))

If you are activating memo order then visit kitchen

⇤ ⇤(morder

=) p
kitchen

)

⇤(�m f , (�f _m f))

1

j ::= p | ¬j | j _j |�j |⇤j | ⇤j

Do memo order if and only if you are sensing order

or you were activating memo order

⇤(�m

order

() (�p
order

_m

order

))

If you are activating memo order then visit kitchen

⇤ ⇤(morder

=) p
kitchen

)

⇤(�m f , (�f _m f))

1

j ::= p | ¬j | j _j |�j |⇤j | ⇤j

Do memo order if and only if you are sensing order

or you were activating memo order

⇤(�m

order

() (�p
order

_m

order

))

If you are activating memo order then visit kitchen

⇤ ⇤(morder

=) p
kitchen

)

⇤(�m f , (�f _m f))

1

j ::= p | ¬j | j _j |�j |⇤j | ⇤j

Do memo order if and only if you are sensing order

or you were activating memo order

⇤(�m

order

() (�p
order

_m

order

))

If you are activating memo order then visit kitchen

⇤ ⇤(morder

=) p
kitchen

)

⇤(�m f , (�f _m f))

1

“If	
 you	
 are	
 given	
 an	
 order	
 then	
 go	
 to	
 the	
 kitchen”	

Example

“If	
 you	
 are	
 given	
 an	
 order	
 then	
 go	
 to	
 the	
 kitchen”	

	
 	
 	
 What	
 is	
 the	
 right	
 LTL	
 formula	
 to	
 capture	
 this?	

Example

Example

“If	
 you	
 are	
 given	
 an	
 order	
 then	
 go	
 to	
 the	
 kitchen”	

	
 	
 	
 	
 	
 	
 	
 	
 	
 What	
 is	
 the	
 right	
 LTL	
 formula	
 to	
 capture	
 this?	

	

•  IniFal	
 guess	
 (direct	
 translaFon):	

	

	

	

	

	

	

j ::= p | ¬j | j _j |�j |⇤j | ⇤j

m order is set on order and never reset

⇤(�m

order

, (�p
order

_m

order

))

If you are activating m order then visit kitchen

⇤ ⇤(morder

) p
kitchen

)

If you are sensing order then visit kitchen

⇤ ⇤(porder

) p
kitchen

)

⇤(�m f , (�f _m f))

1

“If	
 you	
 are	
 given	
 an	
 order	
 then	
 go	
 to	
 the	
 kitchen”	

	

Implicit	
 memory:	
 	

•  	
 Need	
 to	
 remember	
 an	
 order	
 was	
 received	

Example

Example

“If	
 you	
 are	
 given	
 an	
 order	
 then	
 go	
 to	
 the	
 kitchen”	

	
 	
 	
 	
 	
 	
 	
 	
 	
 What	
 is	
 the	
 right	
 LTL	
 formula	
 to	
 capture	
 this?	

	

•  SpecificaFon	
 for	
 desired	
 behavior	

	

	

	

j ::= p | ¬j | j _j |�j |⇤j | ⇤j

m order is set on order and never reset

⇤(�m

order

, (�p
order

_m

order

))

If you are activating m order then visit kitchen

⇤ ⇤(morder

) p
kitchen

)

⇤(�m f , (�f _m f))

1

This	
 paper	

l  Allow	
 users	
 to	
 specify	
 tasks	
 that	
 include	

event	
 memory	

	

l  AutomaFcally	
 define	
 “memory	

proposiFons”	

Memory	
 ProposiFons

•  Implicit

•  Not	
 defined	
 by	
 user

•  Only	
 appear	
 in	
 LTL,	
 not	
 structured	
 English

•  Respond	
 to	
 the	
 explicitly	
 specified	
 event
•  	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 responds	
 to	
 event

•  Example:

j ::= p | ¬j | j _j |�j |⇤j | ⇤j

m order is set on order and never reset

⇤(�m

order

, (�p
order

_m

order

))

If you are activating m order then visit kitchen

⇤ ⇤(morder

) p
kitchen

)

If you are sensing order then visit kitchen

⇤ ⇤(porder

) p
kitchen

)

m f f ⇤(�m f , (�f _m f))

1

j ::= p | ¬j | j _j |�j |⇤j | ⇤j

m order is set on order and never reset

⇤(�m

order

, (�p
order

_m

order

))

If you are activating m order then visit kitchen

⇤ ⇤(morder

) p
kitchen

)

If you are sensing order then visit kitchen

⇤ ⇤(porder

) p
kitchen

)

m f f ⇤(�m f , (�f _m f))

1

After/once Q
1

then Q
req

until Q
2

⇤(�m

truck

, (�p
truck

_m

truck

))

^ ⇤(�m

truck dock

, ((�p
dock

^�m

truck

)_m

truck dock

)

^ ⇤ ⇤(mtruck

) m

truck dock

)

⇤(�m

cust no order

, ((�p
cust

_m

cust no order

)^¬�p
order

))

^ ^
i=1,2,3⇤ ⇤(mcust no order

) p
r

i

)

j ::= p | ¬j | j _j |�j |⇤j | ⇤j

m order is set on order and never reset

⇤(�m

order

, (�p
order

_m

order

))

If you are activating m order then visit kitchen

⇤ ⇤(morder

) p
kitchen

)

If you are sensing order then visit kitchen

⇤ ⇤(porder

) p
kitchen

)

m f f ⇤(�m f , (�f _m f))

After the first time Q
cond

, Q
req

(at least once)

1

Type What to remember? Structured English (S) LTL (M,F)
1 Condition has happened Once Qcond then Qreq sa f e from now on ⇤(m fcond) freq sa f e)^

⇤(�m fcond , (�fcond _m fcond)
After Qcond then Qreq live repeatedly ⇤⇧ (m fcond) freq live)^

⇤(�m fcond , (�fcond _m fcond)
2 Requirement has happened Qreq (at least once) ⇤⇧ (m freq)

⇤(�m freq , (�freq _m freq)
3 Requirement has happened While Qcond then Qreq (at least once) D(fcond) m fcondfreq)

under certain condition ⇤(�m fcond freq , (�freq ^fcond _m freq))
4 Memo is set on Q1 After/once Q1 then Qreq until Q2 D(m f1f2) freq)

and reset on Q2 ⇤(�m f1f2 , ((�f1 _m f1f2)^¬�f2)
*1 ’Only’+cond Only once Qcond then Qreq sa f e from now on LTL in Type 1 +

Only after Qcond then Qreq live repeatedly ⇤((¬�m fcond)) (¬�freq))
*2 requirement + ’only once’ Eventually Qreq live only once LTL in Type 2 + ⇤(m freq) (¬�freq))
*3 requirement under condition If Qcond then eventually Qreq live only once LTL in Type 3 + ⇤(m fcond freq) ¬�freq)

+ ’only once’ If Qcond then Qreq sa f e only once
*4 Memo is self-reset when After each time Qcond , D(m fcondfreq) freq)

the requirement is met Qreq (at least once) ⇤(�m fcondfreq , ((�fcond _m fcondfreq)^
¬�freq)

*5 Condition-Requirement After the first time Qcond , ⇤(�m fcond , (�fcond _m fcond))
memos on both sides Qreq (at least once) ⇤(�m fcond freq , ((�freq ^�m fcond)

_m freq)
D(m fcond) m fcond freq)

TABLE I: Syntax and Grammar

(a) Original transition (b) Forgetfulness

Fig. 1: Forgetfulness with continuous execution

IV. STRUCTURED ENGLISH WITH IMPLICIT MEMORY

This section describes the additional constructs added to
the structured English grammar for automatically generating
and using implicit memory propositions. The new grammar
affords users the expressive power to imply the use of several
kinds of memory propositions, based on which the robot
is constrained to remember events in the history of both
environment and robot behaviors. The presented constructs
extend the grammar described in [15].

A. Structured English Grammar

The syntax and semantics of the new grammar constructs
are listed in Table I. The constructs are grouped into Types,
labeled by the first column of the table. Types 1-4 define the
four basic types of implicit memory propositions, classified
based on the events remembered. Types *1-*5 introduce
derived memory operations that use the four basic types;
details are described in Section IV-B.

The second column of the table explains the events to
be remembered. Types 1-2 are complementary – Type-1
propositions remember that a condition has been satisfied,
while Type-2 propositions remember that a requirement has

been fulfilled. Type-2 propositions are useful for specifying
non-repeated goals. For example, ⇤⇧ (pregion) will drive the
robot to visit the region infinitely often, while ⇤((�m r),
(m r _�pregion)) ^⇤ ⇧ (m r) will not result in repeated
behavior. Type-3 propositions remember that a requirement
has been fulfilled under a specific condition; this allows
specifying the same requirement for multiple conditions.
Type-4 propositions are like Type-1 propositions, but can be
set back to false by a second condition f2. Note that if both
conditions are true, the corresponding Type-4 proposition
will be set to false.

The third column in the table lists the admissible structured
English grammar corresponding to each type of memory.
The symbol Q represents structured English phrases of the
form,“you are activating action”, “visit region”, etc, that
conform to the grammar described in [15]. The composition
of multiple phrases connected by “and/or” is also acceptable.
Furthermore, this work extends the admissible form of Q to
include perfect tense phrases such as “you have sensed/acti-
vated/visited sensor/action”, which correspond to the events
remembered by Type-1 and Type-4 propositions. Note that
in Types 2 and 3, the phrase “at least once” is optional
if following “visit/go to”, and “visit pregion” is translated
into ⇤((�m r), (m r_�pregion))^⇤ ⇧ (m r) in contrast
with the definition in [15]; the new grammar for repeatedly
visiting a region is “Repeatedly visit/go to region”.

The fourth column lists the equivalent LTL formula for
each sentence in the previous column. The symbol f is a
Boolean formula over sensor, action and region propositions.
The structured English phrase Qname corresponds to the
LTL formula fname. The symbol D can represent both ⇤
and ⇤ ⇤. Note that Type-1 propositions impose different
grammatical constraints on safety and liveness requirements
to reduce the ambiguity of the structured English. The other

Grammar	
 for	
 implicit	
 memory	

Type What to remember? Structured English (S) LTL (M,F)
1 Condition has happened Once Qcond then Qreq sa f e from now on ⇤(m fcond) freq sa f e)^

⇤(�m fcond , (�fcond _m fcond)
After Qcond then Qreq live repeatedly ⇤⇧ (m fcond) freq live)^

⇤(�m fcond , (�fcond _m fcond)
2 Requirement has happened Qreq (at least once) ⇤⇧ (m freq)

⇤(�m freq , (�freq _m freq)
3 Requirement has happened While Qcond then Qreq (at least once) D(fcond) m fcondfreq)

under certain condition ⇤(�m fcond freq , (�freq ^fcond _m freq))
4 Memo is set on Q1 After/once Q1 then Qreq until Q2 D(m f1f2) freq)

and reset on Q2 ⇤(�m f1f2 , ((�f1 _m f1f2)^¬�f2)
*1 ’Only’+cond Only once Qcond then Qreq sa f e from now on LTL in Type 1 +

Only after Qcond then Qreq live repeatedly ⇤((¬�m fcond)) (¬�freq))
*2 requirement + ’only once’ Eventually Qreq live only once LTL in Type 2 + ⇤(m freq) (¬�freq))
*3 requirement under condition If Qcond then eventually Qreq live only once LTL in Type 3 + ⇤(m fcond freq) ¬�freq)

+ ’only once’ If Qcond then Qreq sa f e only once
*4 Memo is self-reset when After each time Qcond , D(m fcondfreq) freq)

the requirement is met Qreq (at least once) ⇤(�m fcondfreq , ((�fcond _m fcondfreq)^
¬�freq)

*5 Condition-Requirement After the first time Qcond , ⇤(�m fcond , (�fcond _m fcond))
memos on both sides Qreq (at least once) ⇤(�m fcond freq , ((�freq ^�m fcond)

_m freq)
D(m fcond) m fcond freq)

TABLE I: Syntax and Grammar

Grammar	
 for	
 implicit	
 memory	

Type What to remember? Structured English (S) LTL (M,F)
1 Condition has happened Once Qcond then Qreq sa f e from now on ⇤(m fcond) freq sa f e)^

⇤(�m fcond , (�fcond _m fcond)
After Qcond then Qreq live repeatedly ⇤⇧ (m fcond) freq live)^

⇤(�m fcond , (�fcond _m fcond)
2 Requirement has happened Qreq (at least once) ⇤⇧ (m freq)

⇤(�m freq , (�freq _m freq)
3 Requirement has happened While Qcond then Qreq (at least once) D(fcond) m fcondfreq)

under certain condition ⇤(�m fcond freq , (�freq ^fcond _m freq))
4 Memo is set on Q1 After/once Q1 then Qreq until Q2 D(m f1f2) freq)

and reset on Q2 ⇤(�m f1f2 , ((�f1 _m f1f2)^¬�f2)
*1 ’Only’+cond Only once Qcond then Qreq sa f e from now on LTL in Type 1 +

Only after Qcond then Qreq live repeatedly ⇤((¬�m fcond)) (¬�freq))
*2 requirement + ’only once’ Eventually Qreq live only once LTL in Type 2 + ⇤(m freq) (¬�freq))
*3 requirement under condition If Qcond then eventually Qreq live only once LTL in Type 3 + ⇤(m fcond freq) ¬�freq)

+ ’only once’ If Qcond then Qreq sa f e only once
*4 Memo is self-reset when After each time Qcond , D(m fcondfreq) freq)

the requirement is met Qreq (at least once) ⇤(�m fcondfreq , ((�fcond _m fcondfreq)^
¬�freq)

*5 Condition-Requirement After the first time Qcond , ⇤(�m fcond , (�fcond _m fcond))
memos on both sides Qreq (at least once) ⇤(�m fcond freq , ((�freq ^�m fcond)

_m freq)
D(m fcond) m fcond freq)

TABLE I: Syntax and Grammar

(a) Original transition (b) Forgetfulness

Fig. 1: Forgetfulness with continuous execution

IV. STRUCTURED ENGLISH WITH IMPLICIT MEMORY

This section describes the additional constructs added to
the structured English grammar for automatically generating
and using implicit memory propositions. The new grammar
affords users the expressive power to imply the use of several
kinds of memory propositions, based on which the robot
is constrained to remember events in the history of both
environment and robot behaviors. The presented constructs
extend the grammar described in [15].

A. Structured English Grammar

The syntax and semantics of the new grammar constructs
are listed in Table I. The constructs are grouped into Types,
labeled by the first column of the table. Types 1-4 define the
four basic types of implicit memory propositions, classified
based on the events remembered. Types *1-*5 introduce
derived memory operations that use the four basic types;
details are described in Section IV-B.

The second column of the table explains the events to
be remembered. Types 1-2 are complementary – Type-1
propositions remember that a condition has been satisfied,
while Type-2 propositions remember that a requirement has

been fulfilled. Type-2 propositions are useful for specifying
non-repeated goals. For example, ⇤⇧ (pregion) will drive the
robot to visit the region infinitely often, while ⇤((�m r),
(m r _�pregion)) ^⇤ ⇧ (m r) will not result in repeated
behavior. Type-3 propositions remember that a requirement
has been fulfilled under a specific condition; this allows
specifying the same requirement for multiple conditions.
Type-4 propositions are like Type-1 propositions, but can be
set back to false by a second condition f2. Note that if both
conditions are true, the corresponding Type-4 proposition
will be set to false.

The third column in the table lists the admissible structured
English grammar corresponding to each type of memory.
The symbol Q represents structured English phrases of the
form,“you are activating action”, “visit region”, etc, that
conform to the grammar described in [15]. The composition
of multiple phrases connected by “and/or” is also acceptable.
Furthermore, this work extends the admissible form of Q to
include perfect tense phrases such as “you have sensed/acti-
vated/visited sensor/action”, which correspond to the events
remembered by Type-1 and Type-4 propositions. Note that
in Types 2 and 3, the phrase “at least once” is optional
if following “visit/go to”, and “visit pregion” is translated
into ⇤((�m r), (m r_�pregion))^⇤ ⇧ (m r) in contrast
with the definition in [15]; the new grammar for repeatedly
visiting a region is “Repeatedly visit/go to region”.

The fourth column lists the equivalent LTL formula for
each sentence in the previous column. The symbol f is a
Boolean formula over sensor, action and region propositions.
The structured English phrase Qname corresponds to the
LTL formula fname. The symbol D can represent both ⇤
and ⇤ ⇤. Note that Type-1 propositions impose different
grammatical constraints on safety and liveness requirements
to reduce the ambiguity of the structured English. The other

Type What to remember? Structured English (S) LTL (M,F)
1 Condition has happened Once Qcond then Qreq sa f e from now on ⇤(m fcond) freq sa f e)^

⇤(�m fcond , (�fcond _m fcond)
After Qcond then Qreq live repeatedly ⇤⇧ (m fcond) freq live)^

⇤(�m fcond , (�fcond _m fcond)
2 Requirement has happened Qreq (at least once) ⇤⇧ (m freq)

⇤(�m freq , (�freq _m freq)
3 Requirement has happened While Qcond then Qreq (at least once) D(fcond) m fcondfreq)

under certain condition ⇤(�m fcond freq , (�freq ^fcond _m freq))
4 Memo is set on Q1 After/once Q1 then Qreq until Q2 D(m f1f2) freq)

and reset on Q2 ⇤(�m f1f2 , ((�f1 _m f1f2)^¬�f2)
*1 ’Only’+cond Only once Qcond then Qreq sa f e from now on LTL in Type 1 +

Only after Qcond then Qreq live repeatedly ⇤((¬�m fcond)) (¬�freq))
*2 requirement + ’only once’ Eventually Qreq live only once LTL in Type 2 + ⇤(m freq) (¬�freq))
*3 requirement under condition If Qcond then eventually Qreq live only once LTL in Type 3 + ⇤(m fcond freq) ¬�freq)

+ ’only once’ If Qcond then Qreq sa f e only once
*4 Memo is self-reset when After each time Qcond , D(m fcondfreq) freq)

the requirement is met Qreq (at least once) ⇤(�m fcondfreq , ((�fcond _m fcondfreq)^
¬�freq)

*5 Condition-Requirement After the first time Qcond , ⇤(�m fcond , (�fcond _m fcond))
memos on both sides Qreq (at least once) ⇤(�m fcond freq , ((�freq ^�m fcond)

_m freq)
D(m fcond) m fcond freq)

TABLE I: Syntax and Grammar

(a) Original transition (b) Forgetfulness

Fig. 1: Forgetfulness with continuous execution

IV. STRUCTURED ENGLISH WITH IMPLICIT MEMORY

This section describes the additional constructs added to
the structured English grammar for automatically generating
and using implicit memory propositions. The new grammar
affords users the expressive power to imply the use of several
kinds of memory propositions, based on which the robot
is constrained to remember events in the history of both
environment and robot behaviors. The presented constructs
extend the grammar described in [15].

A. Structured English Grammar

The syntax and semantics of the new grammar constructs
are listed in Table I. The constructs are grouped into Types,
labeled by the first column of the table. Types 1-4 define the
four basic types of implicit memory propositions, classified
based on the events remembered. Types *1-*5 introduce
derived memory operations that use the four basic types;
details are described in Section IV-B.

The second column of the table explains the events to
be remembered. Types 1-2 are complementary – Type-1
propositions remember that a condition has been satisfied,
while Type-2 propositions remember that a requirement has

been fulfilled. Type-2 propositions are useful for specifying
non-repeated goals. For example, ⇤⇧ (pregion) will drive the
robot to visit the region infinitely often, while ⇤((�m r),
(m r _�pregion)) ^⇤ ⇧ (m r) will not result in repeated
behavior. Type-3 propositions remember that a requirement
has been fulfilled under a specific condition; this allows
specifying the same requirement for multiple conditions.
Type-4 propositions are like Type-1 propositions, but can be
set back to false by a second condition f2. Note that if both
conditions are true, the corresponding Type-4 proposition
will be set to false.

The third column in the table lists the admissible structured
English grammar corresponding to each type of memory.
The symbol Q represents structured English phrases of the
form,“you are activating action”, “visit region”, etc, that
conform to the grammar described in [15]. The composition
of multiple phrases connected by “and/or” is also acceptable.
Furthermore, this work extends the admissible form of Q to
include perfect tense phrases such as “you have sensed/acti-
vated/visited sensor/action”, which correspond to the events
remembered by Type-1 and Type-4 propositions. Note that
in Types 2 and 3, the phrase “at least once” is optional
if following “visit/go to”, and “visit pregion” is translated
into ⇤((�m r), (m r_�pregion))^⇤ ⇧ (m r) in contrast
with the definition in [15]; the new grammar for repeatedly
visiting a region is “Repeatedly visit/go to region”.

The fourth column lists the equivalent LTL formula for
each sentence in the previous column. The symbol f is a
Boolean formula over sensor, action and region propositions.
The structured English phrase Qname corresponds to the
LTL formula fname. The symbol D can represent both ⇤
and ⇤ ⇤. Note that Type-1 propositions impose different
grammatical constraints on safety and liveness requirements
to reduce the ambiguity of the structured English. The other

Example:	
 Robot	
 Waiter

•  First	
 go	
 to	
 the	
 check-­‐in	
 desk	

•  Meet	
 the	
 first	
 truck	
 at	
 the	

loading	
 dock,	
 but	
 ignore	

all	
 following	
 trucks	

•  When	
 customers	
 arrive,	
 move	
 between	
 the	
 three	

dining	
 rooms	
 unFl	
 accepFng	
 an	
 order	

•  Each	
 Fme	
 an	
 order	
 is	
 made,	
 go	
 to	
 the	
 kitchen	

Meet	
 the	
 first	
 truck	
 at	
 the	
 loading	
 dock,	
 but	

ignore	
 all	
 following	
 trucks	

•  Structured	
 English:	
 	

	

Aier	
 the	
 first	
 Fme	
 you	
 have	
 sensed	
 truck,	
 go	
 to	
 loading_dock

•  Grammar:

•  LTL:

Task	
 2

j ::= p | ¬j | j _j |�j |⇤j | ⇤j

m order is set on order and never reset

⇤(�m

order

, (�p
order

_m

order

))

If you are activating m order then visit kitchen

⇤ ⇤(morder

) p
kitchen

)

If you are sensing order then visit kitchen

⇤ ⇤(porder

) p
kitchen

)

m f f ⇤(�m f , (�f _m f))

After the first time Q
cond

, Q
req

(at least once)

1

⇤(�m

truck

, (�p
truck

_m

truck

))

^ ⇤(�m

truck dock

, ((�p
dock

^�m

truck

)_m

truck dock

)

^ ⇤ ⇤(mtruck

) m

truck dock

)

j ::= p | ¬j | j _j |�j |⇤j | ⇤j

m order is set on order and never reset

⇤(�m

order

, (�p
order

_m

order

))

If you are activating m order then visit kitchen

⇤ ⇤(morder

) p
kitchen

)

If you are sensing order then visit kitchen

⇤ ⇤(porder

) p
kitchen

)

m f f ⇤(�m f , (�f _m f))

After the first time Q
cond

, Q
req

(at least once)

1

When	
 customers	
 arrive,	
 move	
 between	
 the	
 three	

dining	
 rooms	
 un9l	
 accep9ng	
 an	
 order.

•  Structured	
 English:	

	
 Aier	
 you	
 have	
 sensed	
 customer	
 then	
 visit	
 all	
 dining_rooms	
 unFl	

you	
 are	
 sensing	
 order.

•  Grammar:

•  LTL:

Task	
 3

After/once Q
1

then Q
req

until Q
2

⇤(�m

truck

, (�p
truck

_m

truck

))

^ ⇤(�m

truck dock

, ((�p
dock

^�m

truck

)_m

truck dock

)

^ ⇤ ⇤(mtruck

) m

truck dock

)

j ::= p | ¬j | j _j |�j |⇤j | ⇤j

m order is set on order and never reset

⇤(�m

order

, (�p
order

_m

order

))

If you are activating m order then visit kitchen

⇤ ⇤(morder

) p
kitchen

)

If you are sensing order then visit kitchen

⇤ ⇤(porder

) p
kitchen

)

m f f ⇤(�m f , (�f _m f))

After the first time Q
cond

, Q
req

(at least once)

1

After/once Q
1

then Q
req

until Q
2

⇤(�m

truck

, (�p
truck

_m

truck

))

^ ⇤(�m

truck dock

, ((�p
dock

^�m

truck

)_m

truck dock

)

^ ⇤ ⇤(mtruck

) m

truck dock

)

⇤(�m

cust no order

, ((�p
cust

_m

cust no order

)^¬�p
order

))

^ ^
i=1,2,3⇤ ⇤(mcust no order

) p
r

i

)

j ::= p | ¬j | j _j |�j |⇤j | ⇤j

m order is set on order and never reset

⇤(�m

order

, (�p
order

_m

order

))

If you are activating m order then visit kitchen

⇤ ⇤(morder

) p
kitchen

)

If you are sensing order then visit kitchen

⇤ ⇤(porder

) p
kitchen

)

m f f ⇤(�m f , (�f _m f))

After the first time Q
cond

, Q
req

(at least once)

1

Complete	
 SpecificaFon

l  Go	
 to	
 check_in_desk.	

l  Aier	
 the	
 first	
 Fme	
 you	
 have	

sensed	
 truck,	
 go	
 to	

loading_dock.	

l  Group	
 dining_rooms	
 is	
 room1,	

room2,	
 room3.	

l  Aier	
 you	
 have	
 sensed	
 customer	

then	
 visit	
 all	
 dining_rooms	
 unFl	

you	
 are	
 sensing	
 order.	

l  Aier	
 each	
 Fme	
 you	
 have	
 sensed	

order,	
 go	
 to	
 kitchen.	

Word	
 Count:	
 44	

New	
 Grammar	

• Do	
 memo_check_in	
 if	
 and	
 only	
 if	
 you	
 are	
 in	

check_in_desk	
 or	
 you	
 were	
 acFvaFng	
 memo_check_in	

•  Repeatedly	
 visit	
 memo_check_in	

• Do	
 memo_truck	
 if	
 and	
 only	
 if	
 you	
 are	
 sensing	
 truck	
 or	

you	
 were	
 acFvaFng	
 memo_truck	

• Do	
 memo_dock	
 if	
 and	
 only	
 if	
 you	
 are	
 in	
 loading_dock	
 or	

you	
 were	
 acFvaFng	
 memo_dock	

•  If	
 you	
 are	
 acFvaFng	
 memo_truck	
 then	
 visit	
 memo_dock	
 	

• Do	
 memo_customer	
 if	
 and	
 only	
 if	
 (you	
 are	
 sensing	

customer	
 or	
 you	
 were	
 acFvaFng	
 memo_customer)	
 and	

you	
 are	
 not	
 sensing	
 order	

• Group	
 dining_rooms	
 is	
 room1,	
 room2,	
 room3	

•  If	
 you	
 are	
 acFvaFng	
 memo_dock	
 then	
 visit	
 all	

dining_rooms	

• Do	
 memo_order	
 if	
 and	
 only	
 if	
 (you	
 are	
 sensing	
 order	
 or	

you	
 were	
 acFvaFng	
 memo_order)	
 and	
 you	
 are	
 not	
 in	

kitchen	

•  If	
 you	
 are	
 acFvaFng	
 memo_order	
 then	
 visit	
 kitchen	

Word	
 Count:	
 121	

Old	
 Grammar	

Conclusions	

•  Enriched	
 Structured	
 English	
 grammar	
 for	
 memory	

•  SpecificaFons	
 translate	
 to	
 LTL	
 	

•  AutomaFc	
 creaFon	
 of	
 memory	
 proposiFons	

•  Accommodates	
 several	
 types	
 of	
 events	

	

•  More	
 concise,	
 intuiFve	
 specificaFons	

Avoiding	
 Forge,ulness:	
 Structured	

English	
 Specifica9ons	
 for	
 High-­‐Level	

Robot	
 Control	
 with	
 Implicit	
 Memory	

Vasu	
 Raman	
 (vraman@cs.cornell.edu)	

Bingxin	
 Xu	
 (bx38@cornell.edu)	

Hadas	
 Kress-­‐Gazit	
 (hadaskg@cornell.edu)	

Cameron	
 Finucane	
 (cpf37@cornell.edu)	

	

Cornell	
 University	

LTLMoP:	
 hop://ltlmop.github.com/	
 (GPL)	

9/30/12	

9/30/12	

