Temporal Logic Robot Mission Planning for Slow and Fast Actions

Vasu Raman
Cameron Finucane
Hadas Kress-Gazit

Cornell University
High-Level Tasks

Images: http://www.popsci.com/files/imagecache/article_image_large/articles/beerbot.jpg
http://www.news.cornell.edu/stories/Nov07/DarpaCar.jpg
http://www.technovelgy.com/graphics/content08/toyota-robot-maid-laundry.jpg
Usual Approach

Hard-code high-level aspects → Path-planning during execution

REAL LIFE BY LANCE ALDRICH & GARY WISE

"RECALCULATING..."
Usual Approach

- **Hard-code high-level aspects**
- **Path-planning during execution**

Recent Approaches – formal methods

- **Create abstraction of problem**
- **Synthesize correct discrete solution**
- **Continuously implement discrete solution**
LTLMoP Toolkit Overview

- Specification
 - Synthesis
 - Synthesizable
 - Unsynthesizable
 - Specification Analysis

- FSA

- Hybrid Controller
 - Simulation
 - Physical Robot
LTLMoP Toolkit Overview

- Specification
- Synthesis
 - Synthesizable
 - Unsynthesizable
- Specification Analysis

FSA

Hybrid Controller

Simulation

Physical Robot
Example: fast camera, slow motion

- Robot starts in region r1 with the camera off
 \[\varphi_{r1} \land \neg \pi_{camera} \]

- Activate the camera if and only if you see a person
 \[\land \Box (\Box \pi_{person} \iff \Diamond \pi_{camera}) \]

- Go to r2 infinitely often
 \[\land \Box \Diamond (\varphi_{r2}) \]
Example: fast camera, slow motion

- Robot starts in region r1 with the camera off
 \[\varphi_{r1} \land \neg \pi_{camera} \]

- Activate the camera if and only if you see a person
 \[\land \Box (\Box \pi_{person} \Leftrightarrow \Box \pi_{camera}) \]

- Go to r2 infinitely often
 \[\land \Box \Diamond (\varphi_{r2}) \]
Continuous Execution

- Camera turns on
- Motion from r1 to r2
Original Approach: actions *after* motion

Diagram showing the transition from a state where camera is off (r1) to a state where camera is on (r2) after motion from r1 to r2. The graph illustrates changes in distance from r2, camera readiness, π_{r2}, and π_{camera} over time.
Why is this undesirable?

- Delayed reactivity

- Potentially unsafe states
Alternative Approach: *simultaneous* actions

Motion from r1 to r2

Camera turns on

Distance from r2

Camera readiness

\[\pi_{r2} \]

\[\pi_{\text{camera}} \]

Time

q₀

q₁

q₀

q₁
Why is this undesirable?

- Potentially unsafe executions

Do not activate the camera in r1

\[\square(\neg(\pi_{camera} \land \pi_{r1})) \]
What we really want:

- Automatically check for safe continuous execution during synthesis
Synthesis for Fast/Slow Actions

- Specification
- Synthesis
- Specification Analysis
- Synthesizable
- Unsynthesizable
- FSA
- Hybrid Controller
- Simulation
- Physical Robot
Synthesis for Fast/Slow Actions

“Slow” = motion, “Fast” = everything else

Implicit intermediate state
Synthesis for Fast/Slow Actions

Implicit intermediate states are safe!

Specification → Synthesis
- Synthesizable
- Unsynthesizable

Specification Analysis

FSA

Hybrid Controller

Simulation → Physical Robot
Future Work

- More than two relative action completion durations

Robot actions (in order of duration):
 – Turning on the camera
 – Waving hand
 – Motion between regions

- Explaining unsynthesizability arising from different controller execution durations
Temporal Logic Robot Mission Planning for Slow and Fast Actions

Vasu Raman (vraman@cs.cornell.edu)
Cameron Finucane (cpf37@cornell.edu)
Hadas Kress-Gazit (hadaskg@cornell.edu)

Cornell University

LTLMoP: http://ltlmop.github.com/ (GPL)