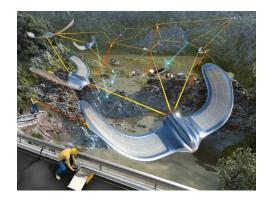
Reactive Switching Protocols for Multi-Robot High-Level Tasks

Vasu Raman

California Institute of Technology

IROS 15 September 2014

Context


- cooperative, homogeneous team of robots
- nondeterministic environment
- Linear Temporal Logic (LTL)* task specification of task φ
- specific task assignment is unimportant

Context

- cooperative, homogeneous team of robots
- nondeterministic environment
- Linear Temporal Logic (LTL)* task specification of task φ
- specific task assignment is unimportant

Kiva Systems

Disaster-Response UAVs (EPFL)

Approach

model robot team as a switched system

$$\dot{x}(t) = f_{\sigma(t)}(x(t)),$$

mode = task assignment

construct motion controllers for each mode

• synthesize switching protocol to realize φ

Key Contributions

- Novelty: concurrent task reassignment and planning via reactive synthesis
- Computation: switched system representation yields exponential improvement during synthesis
- Virtualization: explicit separation between motion controllers and robots
 - allows solution of otherwise infeasible tasks

Example (simulation)

• r1	13	r5 Area2
r2 Area1	r4	<u> </u>
r11 Area4	r9	r7 •
• r12	r10	r8 Area3

Thanks!

Reactive Switching Protocols for Multi-Robot High-Level Tasks

Vasu Raman

California Institute of Technology

Contact: vasu@caltech.edu

IROS 15 September 2014

