Model Predictive Control from Signal Temporal Logic Specifications: A Case Study

Vasu Raman¹ Alexandre Donzé² and Mehdi Maasoumy²

¹California Institute of Technology ²University of California at Berkeley

CyPhy 14 April 2014

Modern Cyber-Physical Systems

Caltech DUC vehicle

NASA/JPL-Caltech Rover

Smart Grid (automationfederation.org)

- Operate **autonomously**
- Fulfill complex requirements
- Easy to **specify** and **enforce** guarantees

Verification

Synthesis

Verification

Synthesis

Temporal Logic Synthesis for CPS (Related Work)

- Robotics
 - Kress-Gazit, Fainekos and Pappas, ICRA 2007
 - Kloetzer and Belta, TAC 2008
 - Karaman and Frazzoli, CDC 2009
 - Bhatia, Kavraki and Vardi, ICRA 2010
- Autonomous Cars

– Wongpiromsarn, Topcu and Murray, HSCC 2010

• Aircraft Electric Power Systems

– Nuzzo et al, IEEE Access 2013

Temporal Logic Synthesis for CPS (what is lacking?)

- Usually requires **discrete abstraction**
 - "If temperature falls below 20°C, get it back above 20°C in the next time step"

 $\Box(T_less_than_20 \implies \bigcirc(\neg T_less_than_20))$

Temporal Logic Synthesis for CPS (what is lacking?)

- Temporal duration is often cumbersome
 - "Infinitely often visit A and no more than 5 time steps later visit B"
 - - "All visits to A and B should be no more than 5.1s apart"

$$\Box(A \implies \diamondsuit(\operatorname{clock_less_than_5.1} \land B))$$

Signal Temporal Logic (STL)

- Continuous predicates: $\mu(\mathbf{x}) > 0$
- Boolean Operators: \land,\lor,\implies,\neg
- Bounded Temporal Operators:

$$\Box_{[a,b]}\varphi \qquad \qquad \diamondsuit_{[a,b]}\varphi \qquad \qquad \varphi_1 \ \mathcal{U}_{[a,b]} \ \varphi_2$$

holds at all $\,t\in [a,b]\,\,\,\,\,\,\,arphi\,$ holds at some $t\in [a,b]\,$

Synthesis undecidable for dense time

- We'll restrict to discrete time (but continuous systems)

Signal Temporal Logic (STL)

Syntax

$$arphi:=\mu\mid
eg \mu\mid arphi\wedge\psi\mid arphi\vee\psi\mid \Box_{[a,b]}\;\psi\mid arphi\;\mathcal{U}_{[a,b]}\;\psi\ \mu\equiv\mu(\mathbf{x})>0$$

Semantics

 $\begin{aligned} (\mathbf{x},t) &\models \mu \\ (\mathbf{x},t) &\models \neg \mu \\ (\mathbf{x},t) &\models \varphi \land \psi \\ (\mathbf{x},t) &\models \varphi \lor \psi \\ (\mathbf{x},t) &\models \varphi \lor \psi \\ (\mathbf{x},t) &\models \varphi \mathcal{U}_{[a,b]} \varphi \end{aligned}$

$$\begin{array}{ll} \Leftrightarrow & \mu(\mathbf{x}(t)) > 0 \\ \Leftrightarrow & \neg((\mathbf{x},t) \models \mu) \\ \Leftrightarrow & (\mathbf{x},t) \models \varphi \land (\mathbf{x},t) \models \psi \\ \Leftrightarrow & (\mathbf{x},t) \models \varphi \lor (\mathbf{x},t) \models \psi \\ \Leftrightarrow & \forall t' \in [t+a,t+b], (\mathbf{x},t') \models \varphi \\ \Leftrightarrow & \exists t' \in [t+a,t+b] \text{ s.t. } (\mathbf{x},t') \models \psi \\ & \land \forall t'' \in [t,t'], (\mathbf{x},t'') \models \varphi. \end{array}$$

Examples

- If temperature falls below 20°C, get it back above 20°C within 5 time steps
 □(T_less_than_20 ⇒ ○(¬T_less_than_20))
- Infinitely often visit A and no more than five time steps later visit B

All visits to A and B should be no more than 5.1 seconds steps apart

 $\Box(A \implies \diamondsuit(\operatorname{clock_less_than_5.1} \land B))$

Examples

- If temperature falls below 20°C, get it back above 20°C within 5 time steps $\Box(T < 20 \implies \diamondsuit_{[0,5]}(T > 20))$
- Infinitely often visit A and no more than five time steps later visit B $\Box \diamondsuit (A \land \diamondsuit_{[0,5]} B)$
- All visits to A and B should be no more than 5.1 seconds steps apart $\Box(A \implies \bigotimes_{[0,5.1]} B)$

Optimal Control Synthesis from STL

<u>Given</u>:

Discrete time continuous system $x_{t+1} = f(x_t, u_t)$ STL specification φ Initial state x_0 Cost function J on runs of the system

$$\begin{array}{ll} \begin{array}{l} \begin{array}{l} \text{Compute:} \\ \text{arg min}_{\mathbf{u}} & J(\mathbf{x}(x_0,\mathbf{u}),\mathbf{u}) \\ \text{s.t. } \mathbf{x}(x_0,\mathbf{u}) \models \varphi \end{array}$$

Model Predictive Control from STL

Given:

Discrete time continuous system $x_{t+1} = f(x_t, u_t)$ STL specification $\,arphi$ Initial state x_0 Cost function J on runs of the system Horizon H Compute:

 $\arg\min_{\mathbf{u}_{t}^{H}} \quad J(\mathbf{x}^{H}(x_{t},\mathbf{u}_{t}^{H}),\mathbf{u}_{t}^{H}))$ s.t. $\mathbf{x}(x_0, \mathbf{u}) \models \varphi$,

Finite Trajectory Parametrization

Lasso-shaped parametrization for infinite executions

 Common approach in Bounded Model Checking

STL Synthesis for Control (Overview)

STL Synthesis for Control (Overview)

Given a formula $\,\psi\,$ with subformulas denoted by $arphi\,$

Introduce
$$z_t^{arphi}$$

Constrained $z_t^{\varphi} = 1 \Leftrightarrow (\mathbf{x}, t) \models \varphi$ such that

Enforce
$$z_0^{\psi} = 1$$

Recursively generate the MILP constraints corresponding to z_0^ψ .

Given a formula $\,\psi\,$ with subformulas denoted by arphi

Predicates

$$\mu(x_t) \leq M_t z_t^{\mu} + \epsilon_t -\mu(x_t) \leq M_t (1 - z_t^{\mu}) - \epsilon_t$$

Conjunction $\psi = \wedge_{i=1}^{m} \varphi_i$

Disjunction $\psi = \vee_{i=1}^{m} \varphi_i$

$$\begin{aligned} z_t^{\psi} &\leq z_t^{\varphi_i}, i = 1, ..., m, \\ z_t^{\psi} &\geq 1 - m + \sum_{i=1}^m z_t^{\varphi_i} \end{aligned}$$

 $z_t^{\psi} \ge z_t^{\varphi_i}, i = 1, ..., m,$ $z_t^{\psi} \le \sum_{i=1}^m z_t^{\varphi_i}$

Vasu Raman (Caltech)

Given a formula $\,\psi\,$ with subformulas denoted by $arphi\,$

$$\begin{aligned} \mathsf{Always} & a_t^N = \min(t+a,N), \ b_t^N = \min(t+b,N) \\ \psi &= \Box_{[a,b]} \varphi & z_t^\psi = \bigvee_{i=a_t^N}^{b_t^N} z_i^\varphi \wedge (\bigvee_{j=1}^N l_j \wedge \bigwedge_{i=j+\hat{a}_t^N}^{j+\hat{b}_t^N} z_i^\varphi) \\ \\ \mathsf{Eventually} & \psi &= \diamondsuit_{[a,b]} \varphi & z_t^\psi = \bigwedge_{i=a_t^N}^{b_t^N} z_i^\varphi \wedge (\bigvee_{j=1}^N l_j \wedge \bigwedge_{i=j+\hat{a}_t^N}^{j+\hat{b}_t^N} z_i^\varphi) \\ \\ \mathsf{Until} & \psi &= \varphi_1 \ \mathcal{U}_{[a,b]} \ \varphi_2 & & \Box_{[0,a]} \ \varphi_1 \wedge \diamondsuit_{[a,b]} \ \varphi_2 \\ & & \wedge \diamondsuit_{[a,a]} (\varphi_1 \ \mathcal{U} \ \varphi_2) \end{aligned}$$

Quantitative Semantics for STL

- How much can we vary the signal and still satisfy ${\mathcal { }}$
- Robustness function $ho^{arphi}:\mathcal{X} imes\mathbb{N}
 ightarrow\mathbb{R}$

$$(\mathbf{x},t) \models \varphi \equiv \rho^{\varphi}(\mathbf{x},t) > 0$$

$$\rho^{\mu}(\mathbf{x},t) = \mu(\mathbf{x}(t))
\rho^{\neg\mu}(\mathbf{x},t) = -\mu(\mathbf{x}(t))
\rho^{\varphi\wedge\psi}(\mathbf{x},t) = \min(\rho^{\varphi}(\mathbf{x},t),\rho^{\psi}(\mathbf{x},t))
\rho^{\varphi\vee\psi}(\mathbf{x},t) = \max(\rho^{\varphi}(\mathbf{x},t),\rho^{\psi}(\mathbf{x},t))
\rho^{\Box_{[a,b]}\varphi}(\mathbf{x},t) = \min_{t'\in[t+a,t+b]}\rho^{\varphi}(\mathbf{x},t')
\rho^{\varphi \ \mathcal{U}_{[a,b]} \ \psi}(\mathbf{x},t) = \max_{t'\in[t+a,t+b]}(\min(\rho^{\psi}(\mathbf{x},t'), \min_{t''\in[t,t']}\rho^{\varphi}(\mathbf{x},t'')))$$

Quantitative Semantics for STL

- How much can we vary the signal and still satisfy ${\mathcal { }}$
- Robustness function $\rho^{\varphi}: \mathcal{X} \times \mathbb{N} \to \mathbb{R}$ $(\mathbf{x}, t) \models \varphi \equiv \rho^{\varphi}(\mathbf{x}, t) > 0$
- Examples: $\mu_1 \equiv x 3 > 0$ $\varphi = \Box_{[0,2]} \mu_1$

$$\rho^{\mu_1}(x,0) = x(0) - 3$$

$$\rho^{\mu_1 \wedge \mu_2}(x,t) = \min(\rho^{\mu_1}, \rho^{\mu_2})$$

$$\rho^{\varphi}(x,t) = \min_{t \in [0,2]} \rho^{\mu_1}(x,t) = \min_{t \in [0,2]} x(t) - 3$$

Maximally Robust Synthesis from STL

<u>Given</u>:

Discrete time continuous system $x_{t+1} = f(x_t, u_t)$ STL specification φ Initial state x_0 Robustness function $\rho^{\varphi} : \mathcal{X} \times \mathbb{N} \to \mathbb{R}$

$\begin{array}{l} \underline{\text{Compute}}:\\ \arg \max_{\mathbf{u}} \quad \rho^{\varphi}(x_0, 0)\\ \text{s.t. } \mathbf{x}(x_0, \mathbf{u}) \models \varphi \end{array}$

Given a formula $\,\psi\,$ with subformulas denoted by $arphi\,$

	Boolean	Robustness encoding
	encoding	encounig
Introduce	z_t^{arphi}	r_t^arphi
Constrained such that	$z_t^{\varphi} = 1 \Leftrightarrow (\mathbf{x}, t) \models \varphi$	$r_t^{\varphi} > 0 \Leftrightarrow (\mathbf{x}, t) \models \varphi$
		In fact, $r_t^arphi = ho^arphi(\mathbf{x},t)$
Enforce	$z_0^{\psi} = 1$	$r_0^{\psi} > 0$

Recursively generate the MILP constraints corresponding to z_0^ψ or $\,r_0^\psi$

Vasu Raman (Caltech)

STL Synthesis for Control (Overview)

STL Synthesis for Control (Overview)

Vasu Raman (Caltech)

This is open loop...what about model predictive control?

MPC/Receding Horizon Control (for **bounded** formulas)

- Pick *H* based on φ
 - conservative bound on trajectory length to decide satisfiability
 - e.g. for $\Box_{[0,10]} \diamondsuit_{[1,6]} \varphi$ use $H \ge 10 + 6 = 16$
- Open-loop synthesis at each time step
 - STL constraints apply on the length-H prefix
- Store history of states and inputs
 - ensures φ is satisfied over the length-*H* prefix
- Extends to certain unbounded formulas
 - e.g. $\varphi = \Box(\varphi_{MPC})$ for bounded φ_{MPC} .

Example: Grid regulation

Controlling ancillary service power flow for grid frequency regulation

Minimize control input subject to

"If the Area Control Error (ACE) increases above 0.01, it will decrease below 0.01 within τ time steps"

$$\begin{split} \varphi_t &= \neg (|\mathsf{ACE}^1| < .01)) \Rightarrow (\Diamond_{[0,\tau]}(|\mathsf{ACE}^1| < .01) \\ &\wedge (\neg (|\mathsf{ACE}^2| < .01)) \Rightarrow (\Diamond_{[0,\tau]}(|\mathsf{ACE}^2| < .01) \end{split}$$

Example: Grid regulation

 $J(ACE, U_{anc}) + ||x[k+H] - x_{ref}||_O$ min $U_{\rm anc}[k]$ x[k+j+1] =s.t. $Ax[k+j] + B_2u_{anc}[k+j] + Ed[k+j]$ **Dynamics** $\underline{u}_{\rm anc} \leq u_{\rm anc}[k+j] \leq \overline{u}_{\rm anc}$ $|u_{\mathrm{anc}}[k+j+1] - u_{\mathrm{anc}}[k+j]| \leq \lambda$ $x[k+H] \in \mathcal{X}[H]$ $x[k] \models \varphi$ Specification 2 H - 1 $J(ACE, U_{anc}) = ||U_{anc}||_{\ell_2} = \sum \sum (U^i_{anc}[k+j])^2$ i=1 i=0 $\varphi = \Box(\varphi_t)$ $\varphi_t = \neg(|ACE^1| < .01)) \Rightarrow (\diamondsuit_{[0,\tau]}(|ACE^1| < .01))$ $\wedge (\neg (|ACE^2| < .01)) \Rightarrow (\bigcirc_{[0,\tau]} (|ACE^2| < .01))$

Vasu Raman (Caltech)

Example: Grid regulation

Vasu Raman (Caltech)

Example: HVAC system

Minimize the input (total air flow)

subject to

"If the occupancy of a room is > 0, the temperature should be above the comfort level"

$$\varphi = \Box_{[0,H]}((\operatorname{occ}_t > 0) \Rightarrow (T_t > T_t^{\operatorname{conf}})$$

Example: HVAC system

$$\varphi = \Box_{[0,H]}((\operatorname{occ}_{t} > 0) \Rightarrow (T_{t} > T_{t}^{\operatorname{conf}})$$

Vasu Raman (Caltech)

Future Work

- Receding Horizon framework for unbounded STL properties
 - ties to online monitoring of STL properties
 - formalize connection with reactive synthesis
- Contract-based framework for specifying and designing components (e.g. of the smart-grid) and their interactions

Thank You!

Model Predictive Control from Signal Temporal Logic Specifications: A Case Study

Vasu Raman¹ Alexandre Donzé² and Mehdi Maasoumy²

¹California Institute of Technology ²University of California at Berkeley

Email: vasu@caltech.edu

