Analyzing Unsynthesizable High-Level Robot Specifications in LTLMoP

Vasu Raman and Hadas Kress-Gazit
Autonomous Systems Lab, Cornell University

CAV 2011 Tuesday, July 19

HIGH-LEVEL TASKS:

- Patrolling a workspace for an indefinite period (infinite behaviour)
- Responding to signals or objects of interest (reactive)

EXAMPLES:

Search and rescue missions
Autonomous Unmanned Vehicles
e.g. DARPA Urban Challenge
Firefighting robots
Household chores (laundry, cleanup)
Restocking supermarket shelves

AUTOMATED HIGH-LEVEL ROBOT CONTROL:

- Need to plan for a large number of contingencies.
- Does the implementation capture the high level requirements?
- Is the intended behavior even achievable?
 - Do there exist robot controllers that guarantee fulfillment of the task?

FORMAL GUARANTEES:

Verifiable integration of high-level planning with continuous control.

LINEAR TEMPORAL LOGIC MISSION PLANNING TOOLKIT (LTLMOP)

- Discretized problem abstraction
- Structured English specifications ⇔ GR(1) formulas in LTL.
 - environment assumptions
 - desired system behaviour
- Synthesis of correct-by-construction controllers.

LTLMoP OVERVIEW

Robot Capability
Definitions
(Sensors/Actions)

(Region Editor)

(Specification Editor)

Specification Editor - install spec * Press conducts * First conducts * Advanced to the invitance of the state of the s

LTLMoP OVERVIEW

Robot Capability
Definitions
(Sensors/Actions)

(Region Editor)

(Specification Editor)

Structured English-to-LTL Parser

LTLMoP Overview

Robot Capability
Definitions
(Sensors/Actions)

(Region Editor)

(Specification Editor)

Structured English-to-LTL Parser

Synthesis

EXAMPLE: FIRE-FIGHTING SCENARIO

Regions:

porch, deck, etc.

Regions:

• porch, deck, etc.

Regions:

porch, deck, etc.

Robot actions:

- pick_up
- drop
- radio
- carrying_item

Regions:

porch, deck, etc.

Robot actions:

- pick_up
- drop
- radio
- carrying_item

Sensors:

- hazardous_item
- person

Regions:

porch, deck, etc.

Robot actions:

- pick_up
- drop
- radio
- carrying_item

Sensors:

- hazardous_item
- person

System Propositions

Regions:

• porch, deck, etc.

Robot actions:

- pick_up
- drop
- radio
- carrying_item

Sensors:

- hazardous_item
- person

System Propositions

Environment Propositions

Env starts with false Robot starts with false Robot starts in **porch**

If you were in **porch** then do not **hazardous_item**

Do pick_up if and only if you are sensing hazardous_item and you are not activating carrying_item

Regions:

porch, deck, etc.

Robot actions:

- pick_up
- drop
- radio
- carrying_item

Sensors:

- hazardous_item
- person

If you did not activate **carrying_item** then always not **porch**

Do radio if and only if you are sensing person

If you are activating **radio** or you were activating **radio** then stay there

Env starts with false Robot starts with false Robot starts in **porch**

Initial Conditions

If you were in **porch** then do not **hazardous_item**

Do pick_up if and only if you are sensing hazardous_item and you are not activating carrying_item

Regions:

• porch, deck, etc.

Robot actions:

- pick_up
- drop
- radio
- carrying_item

Sensors:

- hazardous_item
- person

If you did not activate **carrying_item** then always not **porch**

Do radio if and only if you are sensing person

If you are activating **radio** or you were activating **radio** then stay there

Env starts with false Robot starts with false Robot starts in **porch**

If you were in **porch** then do not **hazardous_item**

Environment Safety

Do pick_up if and only if you are sensing hazardous_item and you are not activating carrying_item

Regions:

porch, deck, etc.

Robot actions:

- pick_up
- drop
- radio
- carrying_item

Sensors:

- hazardous_item
- person

If you did not activate **carrying_item** then always not **porch**

Do radio if and only if you are sensing person

If you are activating **radio** or you were activating **radio** then stay there

System Safety

Regions:

porch, deck, etc.

Robot actions:

- pick_up
- drop
- radio
- carrying_item

Sensors:

- hazardous item
- person

Robot starts with false Robot starts in **porch**

Env starts with false

If you were in **porch** then do not **hazardous_item**

Do pick_up if and only if you are sensing hazardous_item and you are not activating carrying_item

If you did not activate **carrying_item** then always not **porch**

Do **radio** if and only if you are sensing **person**

If you are activating **radio** or you were activating **radio** then stay there

System Liveness

Env starts with false Robot starts with false Robot starts in **porch**

If you were in **porch** then do not **hazardous_item**

Do pick_up if and only if you are sensing hazardous_item and you are not activating carrying item

Regions:

porch, deck, etc.

Robot actions:

- pick_up
- drop
- radio
- carrying_item

Sensors:

- hazardous_item
- person

If you did not activate **carrying_item** then always not **porch**

Do radio if and only if you are sensing person

If you are activating **radio** or you were activating **radio** then stay there

Env starts with false Robot starts with false Robot starts in **porch**

If you were in **porch** then do not **hazardous_item**

Do pick_up if and only if you are sensing hazardous_item and you are not activating carrying_item

Regions:

porch, deck, etc.

Robot actions:

- pick_up
- drop
- radio
- carrying_item

Sensors:

- hazardous_item
- person

If you did not activate **carrying_item** then always not **porch**

Do radio if and only if you are sensing person

If you are activating **radio** or you were activating **radio** then stay there

PROBLEM: UNSYNTHESIZABLE SPECIFICATIONS

UNSATISFIABLE:

System requirements cannot be fulfilled in **any** environment

UNREALIZABLE:

System requirements cannot be fulfilled in **some** admissible environment

GOALS:

- Identify the cause of failure in the LTL specification
- Map it back to structured English

(Simulation)

#Define robot safety including how to pick_up

Do pick_up if and only if you are sensing hazardous_item and you are not activating carrying_item lf you did not activate carrying_item then always not porch

#Define when and how to radio

Do radio if and only if you are sensing person

If you are activating radio or you were activating radio then stay there

#Define robot safety including how to pick_up

Do pick_up if and only if you are sensing hazardous_item and you are not activating carrying_item
If you did not activate carrying_item then always not porch

#Patrol Goals

Visit porch

OTHER TOOLS FOR ANALYSIS

- Interactive game to help explain unrealizability
 - Let the user interact with an environment constructed to thwart the system.
 - Similar to RATSY¹, augmented with domain-specific interface.

¹ R.Bloem, A. Cimatti, K. Greimel, G. Hofferek, R. Könighofer, M. Roveri, V. Schuppan, R. Seeber: *RATSY - A New Requirements Analysis Tool with Synthesis*. CAV 2010: 425-429

CURRENT AND FUTURE WORK

- Identifying domain-specific special cases of unsatisfiability
 - e.g. disconnected topology

- Further narrowing down the cause of unsynthesizability
 - Unsatisfiable/unrealizable cores
- Suggesting changes to the specification that would allow synthesis
 - Add environment assumptions
 - Weaken system requirements

REMINDER: Tool Demo Session

3:00-6:00pm

LTLMoP: https://github.com/LTLMoP

__ (GPL)