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Timing Semantics for Abstraction and Execution of
Synthesized High-Level Robot Control

Vasumathi Raman, Nir Piterman, Cameron Finucane, Hadas Kress-Gazit

Abstract—The use of formal methods for synthesis has recently
enabled the automated construction of verifiable high-level robot
control. Most approaches use a discrete abstraction of the
underlying continuous domain, and make assumptions about the
physical execution of actions given a discrete implementation;
examples include when actions will complete relative to each
other, and possible changes in the robot’s environment while it
is performing various actions. Relaxing these assumptions gives
rise to a number of challenges during the continuous implemen-
tation of automatically-synthesized hybrid controllers. This paper
presents several distinct timing semantics for controller synthesis,
and compares them with respect to the assumptions they make on
the execution of actions. It includes a discussion of when each set
of assumptions is reasonable, and the computational trade-offs
inherent in relaxing them at synthesis time.

Index Terms—high-level behaviors, formal methods, temporal
logic synthesis.

I. INTRODUCTION

ROBOTICS has recently seen the successful application
of formal methods to the construction of controllers for

high-level autonomous behaviors, including reactive condi-
tions and repeated goals [1]–[5]. Applications that involve
such behaviors include search and rescue missions and au-
tonomous vehicle control. Controllers for these tasks are tra-
ditionally constructed by hard-coding the high-level behaviors
and combining low-level techniques like motion planning ad
hoc. Such an implementation is not guaranteed to fulfill the
desired requirements, motivating the use of formal methods to
construct controllers that do provide guarantees.

One technique that has been successfully applied to high-
level robot planning is Linear Temporal Logic (LTL) synthesis,
in which a correct-by-construction controller is automati-
cally synthesized from a formal task specification [4], [5].
Synthesis-based approaches operate on a discrete abstraction
of the robot workspace and a formal specification of the
environment assumptions and desired robot behavior in LTL.
Synthesis algorithms automatically construct an automaton
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guaranteed to fulfill the specification on the discrete abstrac-
tion (if such an automaton exists). The automaton is then used
to create a hybrid controller that calls low-level continuous
controllers corresponding to each discrete transition. During
the execution of this hybrid controller, a single transition
between discrete states in the automaton may correspond to
the simultaneous execution of several low-level controllers.

Consider an Aldebaran Nao [6] humanoid robot, whose
available actions include motion of the arm (waving), a text-
to-speech interface, and walking; walking between regions
of interest takes significantly longer than the other actions.
In the discrete abstraction of the above problem, the robot’s
state encodes its current location and whether it is waving or
speaking. In general, a robot with multiple action capabilities
will use low-level controllers that take varying amounts of
time to complete. When reasoning about correctness, most
approaches make assumptions about the physical execution of
actions given a discrete implementation, such as when actions
will complete relative to one another, and possible changes in
the robot’s environment while it is performing various actions.
Relaxing these assumptions begets a host of challenges in
the continuous implementation of automatically-synthesized
hybrid controllers.

Extending the semantics of discrete-time temporal logic
formulas to continuous or hybrid dynamics requires either
careful definition of new semantics (see e.g. [7]) or a finite
abstraction of the infinite time and state space, such as with
the use of bisimulation relations [8] to define equivalence
classes over states. Bisimulation relations have been proposed
for various timed automata models of hybrid systems, in-
cluding multi-rate and rectangular automata (see [8] for an
overview of these methods). These bisimulations are time-
abstract, in the sense that they do not explicitly encode time
as a continuous variable. The authors of [9] show that time-
abstract bisimulation is insufficient for controlling systems
with general dynamics, and propose an alternative based on
suffix-equivalence for trajectories, which produces finer but
still finite abstractions.

We examine the correctness of continuous executions in the
physical problem domain during discrete-time temporal logic
control synthesis, using a discrete abstraction based on time-
abstract bisimulations. Our framework addresses specifications
in the Generalized Reactivity (1) (GR(1)) [10] fragment of
LTL, which captures a large number of high-level tasks
specified in practice. Related works such as [2], [11] restrict
LTL specifications to the fragment which eliminates the “next”
operator in order to define satisfaction of a formula over
a continuous trajectory. In contrast, we permit the “next”
operator, which allows us to specify immediate reactivity,
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as described in Section IV. We argue that the integration
of computation with control implies that hybrid controllers
operate with an inherent discrete-time semantics in addition
to continuous-time semantics, and so it is meaningful to place
restrictions on the “next” execution of the control loop when
specifying desirable behavior.

Also relevant are previous works that incorporate other
aspects of the physical execution into the discrete synthesis
process. For example, the authors of [12], [13] optimize
the synthesized discrete controllers with respect to a metric
based on the physical workspace. Complementary to these
approaches, we incorporate the continuous-time nature of the
physical execution into the synthesis process.

Main Contributions: Ours is the first work to address the
problem of synthesizing provably correct high-level control
for atomic actions of varying relative execution times. We
present several approaches to discrete synthesis and continuous
execution, each suitable for different assumptions on the
robot’s physical capabilities and the environment in which it
operates. Assumptions on robot actions range in strength from
instantaneous actuation to arbitrary but finite relative execution
times; the approaches also differ in responsiveness to events in
the environment. This paper summarizes and extends results
we previously presented in [4], [14], [15], including details
of an enhanced synthesis algorithm that enables efficient
synthesis for the approach in [15]. As a further contribution, in
Section VI we compare these synthesis frameworks based on
assumptions, complexity and resulting behavior, and illustrate
the differences between them in detail with an example.

II. BACKGROUND

Applying formal methods to the construction of provably
correct robot controllers involves (a) a discrete abstraction in
which the continuous reactive behavior of a robot is described
in terms of a finite set of states, and (b) a temporal logic
formalism for the specification, which in this work is Linear
Temporal Logic (LTL) [16]. This section provides details on
these components.

A. Linear Temporal Logic (LTL)

Syntax: Let AP be a set of atomic propositions. LTL
formulas are defined by the recursive grammar:

ϕ ::= π | ¬ϕ | ϕ ∨ϕ | ©ϕ | ϕ U ϕ,

where π ∈ AP, ¬ is negation, ∨ is disjunction, © is “next”,
and U is a strong “until”. Conjunction (∧), implication (⇒),
equivalence (⇔), “eventually” ( �) and “always” (�) are
derived from these operators.

Semantics: The truth of an LTL formula is evaluated over
infinite sequences of states, usually executions of a finite state
machine representing the system. Each state corresponds to
an assignment of truth values to propositions, mapping each
π ∈ AP to True or False. Given an infinite sequence of truth
assignments σ , the statement σ |= ϕ denotes that σ satisfies
formula ϕ at the first position. The statement σ |= ∆ϕ for ∆ =
(©,�, �,� �) denotes that ϕ is true at the second position,

at every position, at some position, and infinitely often in σ ,
respectively. A finite state machine A with states corresponding
to truth assignments on AP is said to satisfy ϕ if, for every
execution σ of A, σ |= ϕ . The reader is referred to [16] for
the formal semantics.

B. Synthesis

In reactive synthesis for robot control, the set of propositions
AP is partitioned into two sets: a set of sensor propositions (X )
and a set of robot action and location propositions (Y).

An LTL formula ϕ is realizable if there exists a strategy that,
for every finite sequence of truth assignments to the sensor
propositions, provides an assignment to the robot propositions
such that every resulting infinite sequence of truth assignments
to both sets of propositions satisfies ϕ . It turns out that such
a strategy exists if and only if there is a finite state automaton
that encodes it [17]. The synthesis problem is to find such a
finite state automaton, i.e. one whose executions correspond
to sequences of truth assignments that satisfy ϕ .

Definition 1 A finite state automaton is a tuple A =
(Q,Q0,X ,Y,δ ,γX ,γY) where
• Q is a finite set of states.
• Q0 ⊆ Q is a set of initial states.
• X is a set of inputs (sensor propositions).
• Y is a set of outputs (location and action propositions).
• δ : Q× 2X →2Q is the transition relation. In this work,

automata are restricted to be non-blocking, i.e. δ (q,x) 6=
/0 for every q ∈ Q,x ∈ 2X 1.

• γX : Q→ 2X is a “transition” labeling, which associates
with each non-initial state the set of environment propo-
sitions that are true over incoming transitions for that
state. All transitions into a given state have the same
truth assignment to inputs: this lets us associate with
each state a unique truth assignment to X . Note that if
q′ ∈ δ (q,x) then γX (q′) = x. Additionally, for q0 ∈Q0, we
define γX (q0)⊆ 2X as the set of environment propositions
that are true in q0.

• γY : Q→ 2Y is a “state” labeling that maps each state
to the set of robot propositions that are true in that state.

Define γ(q) = γX (q) ∪ γY(q) for q ∈ Q; intuitively, this
labels each state with the input and output propositions that
are true when the robot is in that state. Given a sequence
of states σ = q0q1q2..., define the sequence labeling Γ(σ) =
γ(q0)γ(q1)γ(q2).... An automaton is deterministic if, for every
q ∈ Q and every x ∈ 2X , |δ (q,x)| = 1. Unless mentioned ex-
plicitly, all automata considered in this work are deterministic.
A deterministic automaton corresponds to a robot strategy, as
described below.

Let δ (q) = {δ (q,x) | x ∈ 2X } denote the set of possible
successor states of state q. Finally, let δY(q,x) = γY(δ (q,x));
intuitively, this denotes the set of actions the robot takes when
it senses input x while in state q.

1This assumption is without loss of generality, since a sink state with a
self-transition can be added to replace any blocking transition.
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Definition 2 Given ϕ = (ϕe⇒ ϕs), deterministic automaton
Aϕ =(Q,Q0,X ,Y,δ ,γX ,γY) realizes ϕ if ∀σ = q0q1q2...∈Qω

such that q0 ∈ Q0 and qi+1 ∈ δ (qi), Γ(σ) |= ϕ .

Given a task specification and a description of the
workspace topology, this work considers formulas of the
form ϕe ⇒ ϕs, where ϕe encodes assumptions about the
environment’s behavior and ϕs represents the desired robot
(system) behavior. In turn, ϕe and ϕs have the structure
ϕe = ϕ i

e∧ϕ t
e∧ϕ

g
e , ϕs = ϕ i

s∧ϕ t
s ∧ϕ

g
s , where:

• ϕ i
e and ϕ i

s are non-temporal Boolean formulas over X and
Y respectively, and constrain the initial sensor and robot
proposition values, respectively.

• ϕ t
e represents safety assumptions about behaviors of the

environment, and consists of a conjunction of formulas
of the form �Ai where each Ai is a Boolean formula
over X ∪Y∪©X ; here ©X = {©x | x ∈X}. Similarly,
ϕ t

s represents the robot safety constraints: it consists of a
conjunction of �Ai formulas where each Ai is a Boolean
formula over X ∪ Y ∪©X ∪©Y . Intuitively, ϕ t

e and
ϕ t

s define the allowed environment and system transition
relations, respectively. In each discrete time step, the
environment’s transition relation can depend only on the
previous state, while the system transition relation can
depend on both the previous state and the environment’s
current transition.

• ϕ
g
e =

∧m
i=1� �Ji

e and ϕ
g
s =

∧n
j=1� �J j

s represent fair-
ness assumptions on the environment and desired liveness
guarantees for the system, respectively. Each Ji

e,J
j
s is a

Boolean formula over X ∪Y , and represents an event that
should occur infinitely often during controller execution.

Given a specification ϕ , consider the most general non-
deterministic automaton over X and Y , namely Nϕ =
(Q,Q0,X ,Y,δ ,γX ,γY) such that for every q ∈ Q, δ (q,x) =
{q′ | ∃σ ∈ (2X∪Y)ω ,Γ(qq′)σ |=ϕ t

e⇒ϕ t
s}. Here σ is an infinite

completion of the finite truth assignment sequence Γ(qq′) such
that the resulting sequence satisfies ϕ t

e⇒ ϕ t
s .

Finding a strategy for the robot that fulfills the specification
ϕ can be thought of as exploring the above nondeterministic
automaton Nϕ in the aim of finding a deterministic automaton
Aϕ “contained” in it, which realizes the specification. Synthe-
sizing a deterministic automaton that realizes an arbitrary LTL
formula is doubly exponential in the size of the formula [17].
However, formulas of the form described above correspond to
a fragment of LTL termed Generalized Reactivity or GR(1),
for which the algorithm introduced in [10] permits synthesis
in time polynomial in the size of the state space2.

III. APPROACH 1: INSTANTANEOUS ACTIONS WITH
SYNCHRONOUS ACTION COMPLETION [4]

This section reviews the synthesis algorithm and continuous
execution paradigm introduced in [4], wherein the discrete
synthesis assumes instantaneous actions. This approach is
implemented in the Linear Temporal Logic Mission Planning
(LTLMoP) toolkit [19], which allows a specification written

2The correctness of this synthesis algorithm relies on a technical assumption
on the specifications, namely that they are well-separated [18].

in a structured English grammar [20] to be transformed into a
hybrid controller for use with physical robots and in simula-
tion. Example 1, adapted from [14], will serve to demonstrate
the stages of synthesis for a simple high-level task.

A. Discrete Abstraction and Formal Specification

In this work, the relevant features of the continuous robot
control problem are abstracted using a finite set of proposi-
tions. These propositions could result, for instance, from a
discrete abstraction of the workspace and continuous robot
dynamics [8], [21]. The approach presented in this paper is
agnostic to the level of abstraction - it can be very fine-grained
at the expense of the size of the state space, or very coarse at
the expense of greater complexity of the abstraction grounding.
Since we do not make any assumptions on the underlying robot
dynamics, we do not present in detail how such abstractions
can be obtained, but note that defining discrete abstractions
for various settings is a topic of current research in the hybrid
systems community.

For the purpose of presentation, we consider the following
set of propositions:
• πs for every sensor input s (e.g., πperson is true if and only

if a person is sensed)
• πa for every robot action a (e.g., πcamera is true if and

only if the robot’s camera is on)
• πr for every location or region r (e.g., πbedroom is true if

and only if the robot is in the bedroom).
Let L⊆Y denote the set of location propositions. Thus, for

every sensor input s, robot action a and region r, πs ∈X ,πr ∈
L,πa ∈ Y\L. The value of each π ∈ X ∪Y is the abstracted
binary state of a low-level black-box component, such as a
thresholded sensor value or the robot’s location with respect
to some partitioning of the workspace.

Example 1 Consider a simple two-room workspace where the
two adjacent locations are labeled r1 and r2 (represented by
propositions πr1 and πr2 ). The robot has one sensor, which
senses a person (represented by πperson), and one action, which
is to turn a camera on or off (πcamera). The robot starts in room
r1 with the camera off. When it senses a person, it must turn on
the camera. Once the camera is on, it must stay on. Finally, the
robot must visit room r2 infinitely often. Here X = {πperson},
Y = {πr1 ,πr2 ,πcamera}, and L= {πr1 ,πr2}.

A high-level task is specified on this discrete abstraction
using an LTL formula over X ∪ Y . There are two types
of properties allowed in a specification: safety properties,
which state that “something bad never happens,” and liveness
conditions, which say “something good (eventually) happens.”

Since the robot can be in exactly one location at any given
time, the formula ϕr = πr∧

∧
r′ 6=r¬πr′ is used to represent the

robot being in region r. The robot’s motion in the workspace
is governed by the adjacency of regions and the availability of
controllers to drive it between adjacent regions. In LTLMoP,
the adjacency relation is automatically encoded as a logic
formula ϕtrans. The adjacency relation for Example 1 is:

ϕtrans = �(ϕr1 ⇒ (©ϕr1 ∨©ϕr2))∧�(ϕr2 ⇒ (©ϕr2 ∨©ϕr1)).
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Note that the camera action is a simpler case, since it
is modeled as having two binary states (on/off), and thus
captured by a single Boolean proposition, assuming the avail-
ability of controllers for toggling its state.

The task in Example 1 corresponds to the following LTL
specification:

(ϕr1 ∧¬πcamera) #Initial
(Robot starts in region r1 with the camera off)

∧ �(©πperson⇒©πcamera) #Safety
(Activate the camera if you see a person)

∧ �(πcamera⇒©πcamera) #Safety
(Camera stays on once turned on)

∧ � �(πr2) #Liveness
(Go to r2 infinitely often)

B. Synthesis

The details of the GR(1) synthesis algorithm in [10] are
provided below, and will be useful when comparing the
alternatives in future sections. Given a set of propositions
P⊆ AP, P |= ϕ denotes that all truth assignments setting π ∈ P
to True and π 6∈ P to False satisfy ϕ . The semantics of µ-
calculus formulae over Nϕ is defined recursively as follows:
• The set of states JϕK is defined inductively on the

structure of the µ-calculus formula. A Boolean formula
ϕ is interpreted as the set of states JϕK in which ϕ is
true, i.e. JϕK = {q ∈ Q | γ(q) |= ϕ}.

• The logical operator  is defined as in [10]: JϕK= {q∈
Q | ∀x ∈ 2X , δ (q,x)∩JϕK 6= /0}. Informally, this is the set
of states q from which the robot can enforce that the next
state will be in JϕK, regardless of what the environment
does next (i.e. for every x ∈ 2X ). In Example 1, Jπr2K
is the set of all states in which the robot can move to
region r2, regardless of what the environment does, so
Jπr2K = {q0,q1,q2,q3} in Fig. 1.

• Let ψ(X) denote a µ-calculus formula ψ with free
variable X . JµX .ψ(X)K = ∪iXi where X0 = /0 and Xi+1 =
Jψ(Xi)K. This is a least fixpoint operation, computing the
smallest set of states X satisfying X = ψ(X).

• JνX .ψ(X)K = ∩iXi where X0 = Q and Xi+1 = Jψ(Xi)K.
This is a greatest fixpoint operation, computing the largest
set of states X satisfying X = ψ(X).

Synthesis is formulated as a two-player game between the
robot and its uncontrolled environment, as captured by its
sensors. The set of winning states for the robot is characterized
by the µ-calculus formula ϕwin =

ν


Z1
Z2
...

Zn

 ·


µY.
(∨m

i=1 νX .(J1
s ∧Z2∨Y ∨¬Ji

e∧X)
)

µY.
(∨m

i=1 νX .(J2
s ∧Z3∨Y ∨¬Ji

e∧X)
)

...
µY.

(∨m
i=1 νX .(Jn

s ∧Z1∨Y ∨¬Ji
e∧X)

)


where Ji
e is the ith environment liveness (i∈ {1, ...,m}), and

J j
s is the jth system liveness ( j ∈ {1, ...,n}). Let j⊕1= ( j mod

n)+1. For i∈ {1, ...,m} and j ∈ {1, ...,n}, the greatest fixpoint
νX .(J j

s ∧Z j⊕1 ∨Y ∨¬Ji
e ∧X) characterizes the set of

states from which the robot can force play to stay infinitely in
states satisfying ¬Ji

e, thus falsifying the left-hand side of the
implication ϕe ⇒ ϕs, or in finitely many steps reach a state

in the set Qwin = JJ j
s ∧Z j⊕1∨Y K. The two outer fixpoints

ensure that the robot wins from the set Qwin — µY ensures that
play reaches a J j

s ∧Z j⊕1 state in a finite number of steps,
and νZ ensures that the robot can loop through the liveness
properties in cyclic order. If every initial state is winning,
we can extract an automaton realizing the specification from
the intermediate steps of the above computation; details are
available in [10].

Algorithm 1 Generalized synthesis algorithm from [10]
Input: ϕ , X , Y
Output: Aϕ that realizes ϕ

1: Construct Nϕ

2: Compute ϕwin
3: if ϕ i

e∧ϕ i
s =⇒ ϕwin then

4: Extract strategy Aϕ from intermediate values of X ,Y,Z
5: else
6: FAIL
7: end if

When a specification is realizable, the above synthesis
algorithm yields an automaton that implements the task on
the discrete abstraction. If no such automaton exists, LTLMoP
provides the user with a cause of unsynthesizability, as in [22],
[23]. Fig. 1 depicts the automaton synthesized for Example 1.
Each state of the automaton is labeled with the robot location
and the truth assignment to action propositions in that state,
and each transition is labeled with the truth assignment to
sensor propositions required for that transition to be enabled.
Incoming transitions therefore also determine the truth value
of the sensor propositions for each state. The labels ri,camera
and person represent πri ,πcamera and πperson respectively.

C. Continuous Execution

If an automaton is obtained, a controller that implements the
corresponding continuous behavior is constructed by viewing
the automaton as a hybrid controller; a transition between
two states is achieved by the activation of one or more low-
level (possibly continuous) controllers corresponding to each
robot proposition. The atomic controllers used satisfy the
bisimulation property [8], which ensures that every change in
the discrete robot model can be implemented in the continuous
domain (e.g., the motion controllers are guaranteed to drive the
robot from one region to another regardless of the initial state
within the region). The feedback motion controllers presented
in [24] and [25] are among several that satisfy this property.

Consider the automaton in Fig. 1. Suppose the robot starts in
room r1, with its camera turned off and no person sensed (so it
is in the initial state q0 in Fig. 1). Suppose it then senses a per-
son. The safety condition �(©πperson⇒©πcamera) requires
it to turn on the camera. In order to fulfill its patrol goal, it will
also try to go to room r2, so the automaton generated by the
synthesis algorithm in [10] contains a transition from q0 to q1.
To implement the transition (q0,q1), a motion controller and
a controller for turning on the camera must both be invoked.

The controller synthesis framework presented in this section
assumes that all robot actions are instantaneous. This assump-
tion is justified when the robot controllers do not take a lot
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r1
¬camera

q₀

r2
¬camera¬person

r2
cameraperson

¬person

    q₂

person
person

q₁

r2
camera

¬person
person

¬person

q₃

Fig. 1: Synthesized automaton for Example 1. Each state is
labeled with the robot location and the truth assignment to
action propositions in that state. Each transition is labeled with
the truth assignment to sensor propositions that enables it.

of time to complete, such as in tasks that do not involve slow
actions like motion. This assumption is also often violated
in practice without consequence when all actions take similar
amounts of time.

Under the continuous execution paradigm described in [4],
all controllers except motion between adjacent regions are
assumed to have instantaneous execution. Given a discrete
transition between two states with different locations, the
motion controller for driving the robot between regions is
activated first, and the remaining controllers only activated (or
deactivated) once the robot has crossed into the new region;
all controllers complete synchronously. Thus, to execute the
transition (q0,q1) depicted in Fig. 1, the hybrid controller first
activates the controller for moving from r1 to r2, and only
once that boundary has been crossed will it activate the (in-
stantaneous) controller for turning on the camera, completing
the discrete transition (q0,q1). Fig. 2(a) depicts the change in
state for the transition (q0,q1), and how it corresponds to the
progress of the continuous controllers.

D. Resulting Behavior

The approach to continuous execution in [4] has two unde-
sirable qualities when actions are non-instantaneous (violating
the assumption made at synthesis time):

Delayed Response: Since motion is executed first, this execu-
tion can result in a perceived lack of responsiveness to sensor
inputs. For example, the camera should be turned on as soon
as a person is sensed, regardless of the other actions to be
performed. However for transition (q0,q1) in Fig. 1, using the
approach to continuous execution in this section, the robot will
not turn on its camera as soon as it senses a person, instead
waiting until the transition to r2 has been completed.

Unchecked Intermediate States: On the other hand, when
non-motion controllers are non-instantaneous, continuous ex-
ecution can admit intermediate states that are absent in the
original automaton. For example, if the low-level controller
for turning on the camera is non-instantaneous, the continuous
execution of the controller in Example 1 will pass through the
intermediate state q f̄ s

0 (not present in the discrete automaton)
with γY(q

f̄ s
0 ) = {πr2}, as depicted in Fig. 2(b). Although q f̄ s

0
does not violate the specification in Example 1, this may not
be true in general, as demonstrated by Example 2 below.

IV. APPROACH 2: SLOW AND FAST ACTION CLASSES
WITH SYNCHRONOUS CONTROLLER ACTIVATION [14]

While there are tasks for which the assumption of in-
stantaneous actions is reasonable, a wider variety of tasks
beg a more sophisticated model of the timing semantics of
actuation. This includes all tasks that involve robot motion. In
an attempt to relax the assumption of instantaneous actions,
the robot’s actions can be grouped into sets based on controller
execution duration. This section summarizes the controller
synthesis framework proposed in [14], where the robot actions
were grouped into two such sets. To address the problem
of delayed response that arises when using the approach in
Section III, it is also desirable to be able to activate the
camera simultaneously with the motion, to allow immediate
reaction to the person sensor. This section therefore considers
a continuous execution paradigm where all action controllers
for a given transition are activated at the same time.

A. Problem Statement

Assume that there are two kinds of low-level controllers
— fast and slow — taking times tF and tS respectively, with
tF� tS. More specifically, assume that motion is the only slow
controller. The set of system propositions is partitioned based
on the speed of the corresponding low-level controllers, into
YS = L and YF = Y\L (i.e. location and non-location propo-
sitions). In Example 1, YF = {πcamera} and YS = {πr1 ,πr2}.

Example 2 Consider Example 1 with the added safety:
�(¬(πcamera∧ϕr1)) (Do not activate the camera in r1)

In this case, the execution resulting from turning on the
camera and starting the motion to r2 at the same time would
pass through the intermediate state q f s̄

0 (Fig. 2(c)), not present
in the discrete automaton. This execution would therefore be
unsafe. Note that the camera turning on in r1 is not captured by
the discrete (and safe) model. For this example, the execution
depicted in Fig. 2(b) is still safe, while that in Fig. 2(c)
is not. It is desirable to obtain a controller that guarantees
safety of intermediate states like q f s̄

0 , which are not explicitly
present in the synthesized automaton or checked during the
existing synthesis process, but rather occur as artifacts of the
continuous execution.

It may seem reasonable to circumvent these problems by
allowing at most one robot action per transition. However, this
could result not just in unnecessarily large automata, but also
in newly unsynthesizable specifications. In fact, Example 1
(where the camera can turn on in r1) would be unsynthesizable
because the robot can never move from r1 to r2 if the
environment infinitely alternates between person and no person
(as it must toggle the camera on and off, and cannot move
while doing so). So instead, we will explicitly model and
certify intermediate states when synthesizing an automaton.

Given a specification ϕ , let (q,q′) be a potential dis-
crete transition in Nϕ . Given Y = YF ∪YS, define γYF (q) =
γY(q)∩YF and γYS(q) = γY(q)∩YS. Let q f s̄(q′) denote the
discrete state with γY(q f s̄(q′)) = γYS(q)∪ γYF (q

′). This is the
intermediate state in the transition between q and q′, such that
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(a) Motion completes first, instantaneous camera. This corresponds to the approach in [4]
(assuming instantaneous fast actions).
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(b) Actual execution corresponding to 2(a). Motion completes first, camera is non-
instantaneous.
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(c) Camera completes first when both controllers are activated together as in [14].

Fig. 2: Timing diagrams for executing (q0,q1) in Fig. 1.

the fast actions have finished executing but the slow actions
have not. Define

h(q,q′)=
{

qq f s̄(q′) if γYS(q) 6= γYS(q
′)∧ γYF (q) 6= γYF (q

′)
q otherwise

The function h(q,q′) returns the intermediate state q f s̄(q′)

only if both slow and fast actions change over the transition
(q,q′). Note that if only the slow actions or only the fast
actions change, there is no intermediate state in the continuous
execution. In Example 1, h(q0,q1) = q0q f s̄(q1)

0 .

Definition 3 Given A = (Q,Q0,X ,Y,δ ,γX ,γY), the discrete
lifting of the set of its executions EA = {q0q1... ∈ Qω | qi+1 ∈
δ (qi)} is HFS

A = {h(q0,q1)...h(qi,qi+1)... | q0q1... ∈ EA}.

HFS
A defines a lifting onto the set of discrete states Q of

all executions of automaton A when there are controllers of
two completion times, and they are executed simultaneously
to implement each discrete transition.

We assume known a set of safe states, Qsa f e, which can be
arbitrarily defined — in this paper, it is the set of all states
not explicitly excluded by the safety properties ϕ t

e and ϕ t
s , and

can be computed symbolically. An alternative is to explicitly
enumerate the set of safe states.

Problem 1 Given ϕ,Y = YF ∪YS and a set of safe states
Qsa f e, construct Aϕ such that ∀σ ∈HFS

Aϕ
,σ ∈Qω

sa f e (if such an
automaton exists).

r1
¬camera

q

r2
camera

person

r1
camera

q  

qfs

Fig. 3: Intermediate state with fast camera and slow motion
for transition (q1,q1) in Fig. 1

Intuitively, the goal is to generate an implementing automaton
such that every continuous execution contains only safe states.

B. Solution

In response Problem 1, we now present a synthesis algo-
rithm and continuous execution paradigm that guarantees cor-
rectness when simultaneously executing low-level controllers
of up to two different completion times for each discrete tran-
sition. The proposed framework explicitly introduces, at the
discrete level, the intermediate states arising during continuous
execution, and formally reasons about them. We previously
presented a short version of this in [14].

To incorporate the relative execution times of the action
controllers, Algorithm 1 is further constrained to generate
only automata with safe intermediate states as follows. Given
ϕ,Y = YF ∪YS and Qsa f e, define the operator FS such that:
JFSϕK = {q ∈ Q | ∀x ∈ δX (q),

either
∃q′ ∈ δ (q,x)∩ JϕK such that
(γYF (q) = γYF (q

′) or γYS(q) = γYS(q
′)),

or
∃q′ ∈ δ (q,x)∩ JϕK such that
γYF (q) 6= γYF (q

′) and γYS(q) 6= γYS(q
′),

and q f s̄ ∈ Qsa f e}
Thus, JFSϕK is the set of states from which the system can
in a single step force the play to reach a state in JϕK, either:
• by executing actions of only one controller duration (fast

or slow) so that there are no intermediate discrete states
in the continuous execution, or

• by executing actions of both fast and slow controller
durations, such that the intermediate state q f s̄ is safe.

Informally, JFSϕK is a subset of JϕK, with the additional
constraint that if both fast and slow controllers are to be
executed to implement a transition into JϕK, the resulting
intermediate state is safe.

Proposition 1 Algorithm 1 with the operator  in formula
ϕwin replaced by FS yields a sound and complete synthesis
algorithm that solves Problem 1.

Proof: The only new property of the synthesis algorithm
is to restrict the transitions in the resulting automaton to
those for which the intermediate state is safe according to
Qsa f e. Therefore any Aϕ synthesized by this modified algo-
rithm realizes the specification as well as guaranteeing that
∀σ ∈HFS

Aϕ
,σ ∈Qω

sa f e; this shows soundness. On the other hand,
by completeness of the original synthesis algorithm in [10],
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r1 r2 r1 r2

robot person enters
field of view

trajectory (camera off)
trajectory (camera on)

a) b)

Fig. 4: Comparison of continuous trajectories and discrete
events resulting from Approaches 1 and 2 for Example 1.
a) The camera is turned on as soon as a person is sensed,
according to Approach 2. b) When a person is sensed, motion
is completed first, then the camera turns on. This corresponds
to Approach 1. The observed trajectory under Approach 3 will
depend on whether the camera is allowed in r1.

and the fact that the only additional restriction is this property,
Algorithm 1 will return such a strategy if one exists, and is
thus complete for Problem 1.

C. Continuous Execution

The proposed synthesis algorithm is accompanied by a
new execution paradigm that calls all low-level controllers
corresponding to a discrete transition simultaneously. Thus,
to execute the transition (q0,q1), the hybrid controller con-
structed for Example 1 activates the controller for turning on
the camera (fast) simultaneously with that for moving from
r1 to r2 (slow). The transition (q0,q1) is then considered
complete only when the motion completes. This approach
produces controllers that are correct under the assumption that
the environment does not change during execution of a discrete
transition; any inputs that violate this assumption are ignored.

D. Resulting Behavior

Consider again the specification in Example 1, in which the
robot has to move from its initial location r1 to its destination
r2 and turn its camera on if it sees a person along the way.
With the new execution paradigm, the hybrid controller turns
the camera on immediately when a person is sensed. The
trajectory that results from this controller is depicted in Fig.
4(a). Using the execution paradigm in Section III, even if the
robot sensed a person while in the middle of r1, it would only
react to it once it completed its movement to region r2. This
is depicted in Fig. 4(b).

For Example 2, where the system safety condition includes
“Always not camera in r1” (�¬(πcamera ∧ ϕr1)), a state in
which the system senses a person is only in JFS πcameraK
if the robot can stay in the same region while turning on the
camera. Recall that q0 is the state in which the robot is in
r1 with the camera off. Observe that q0 6∈ JFS πcameraK (this
means that in q0, the robot cannot guarantee that the camera
will be turned on in the next time step). This is because,
if the environment sets πperson to true while the robot is
still in r1, the safety condition �(¬(πcamera ∧ϕr1)) prevents
the robot from turning on the camera before first moving
to r2, and so the camera cannot be immediately activated
since it might finish execution before the robot had left r1.
The corresponding specification is unrealizable under the new
synthesis algorithm, whereas the original synthesis algorithm

would return an automaton that included the transition (q0,q1)
in Fig. 1. This difference is consistent with the observation that
this transition is safe for the execution in Section III, under
the assumption of instantaneous fast actions, but is unsafe if
all action controllers are to be called simultaneously.

Since transitions are now explicitly non-instantaneous, we
have to decide how to respond to changes in the environment
once a transition has been started, until the destination state
is reached. Consider again the transition (q0,q1) in Fig. 1,
where the camera will be turned on immediately at the same
time as motion, but will complete before the robot has reached
r2. Suppose the robot stops sensing a person after the camera
has been turned on, but before it has reached r2. Then the
transition (q0,q1) will be aborted, and the transition (q0,q2)
will be taken instead. This results in the camera going from on
to off, violating the safety condition that enforces persistence
of the camera once it turns on. To avoid such unsafe behaviors,
the new execution paradigm will ignore the disappearance of a
person after the camera has turned on. Correctness is therefore
at the expense of being fully responsive to the environment for
the time taken to move between regions.

Note that, in the most general case, the relative execution
times of the low-level controllers may be completely unknown,
and therefore the safety of continuous executions correspond-
ing to every possible ordering of controller execution times
must be considered. The  operator can be modified to check
for the safety of every possible sequence of intermediate
states during synthesis; however, this leads to a combinatorial
explosion in the time taken for synthesis, since the number of
such sequences is factorial in the size of the set of actions Y .

V. APPROACH 3: ARBITRARY RELATIVE ACTION
COMPLETION [15]

This section proposes a synthesis framework that allows
immediate reactivity as well as uninterrupted responsiveness
to changes in the environment, and generalizes directly to
arbitrary (but finite) action completion times. This approach
relaxes all previous assumptions on the low-level controller
execution durations, with a moderate computational overhead.
In other words, it solves the following problem:

Problem 2 Given a specification ϕ with Y such that the
action represented by each y ∈ Y may have a different
execution duration, construct a discrete automaton Aϕ (if
such an automaton exists) and continuous execution paradigm
such that every resulting execution satisfies ϕ , even when the
environment may change before an action has completed.

To account for the non-instantaneous execution of continu-
ous controllers, each robot action is viewed as the activation of
the corresponding low-level controller rather than its complete
execution, and a new sensor proposition is introduced in the
discrete model to indicate whether the controller has finished
executing. That is, the robot is able to sense when a low level
controller has completed its action (e.g., the camera has turned
on, or the robot has arrived in region r1).
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Original LTL (ϕ) New LTL (ϕ̂)
ϕr1 ∧¬πcamera πc

r1
∧¬πc

camera
�(©πperson⇒©πcamera) �(©πperson⇒©πcamera)
�((πcamera⇒©πcamera)) �((πc

camera⇒©πcamera))
� �(πr2) � �(πc

r2
)

TABLE I: Proposition replacement for Example 1

A. Discrete Abstraction

The set of propositions is now modified to consist of:
• πs for each sensor input s (e.g., πperson is true if and only

if a person is sensed)
• πa for the activation of each robot action a (e.g., πcamera

is true if and only if the robot has activated the controller
to turn on the camera). Similarly, ¬πa represents the
activation of the controller for turning a off.

• πr for the initiation of motion towards each region r (e.g.,
πbedroom is true if and only if the robot is trying to move
to the bedroom). ϕr is defined as in Section II.

• πc
a ,π

c
r for the completion of the controller for turning

action a on, or motion to region r (e.g., πc
camera is true

if and only if the camera has finished turning on, and
πc

bedroom is true if and only if the robot has arrived in the
bedroom). ¬πc

a represents the completion of the controller
for turning action a off.3

Action/motion completion is modeled as an event sensed
by the robot: for every sensor input s, robot action a and
region r, πs,π

c
a ,π

c
r ∈ X and πa,πr ∈ Y . For Example 1, X =

{πperson,π
c
r1
,πc

r2
,πc

camera} and Y = {πr1 ,πr2 ,πcamera}.

B. Formal Specification Transformation

Given this new discrete abstraction, the task specification
now governs which robot actions can be activated, and how
the action-completion sensors behave: it is revised as follows.

1) Proposition replacement in the original specification:
Given a task specification ϕ = (ϕe⇒ ϕs) constructed for use
with the synthesis framework in [4], it is modified as follows:
• Initial conditions specify the sensed state of the robot, so

every occurrence of πa and πr in ϕ i
s is replaced with an

assumption on πc
a and πc

r in ϕ i
e, respectively.

• Robot goals are predicated on the completion of actions
(as sensed by the corresponding sensor). So every occur-
rence of πa in ϕ

g
s is replaced with πc

a . Similarly, robot
goals refer to the sensed location πc

r rather than just the
activation of the motion controller πr.

• Robot safety conditions govern which controllers are to
be activated in response to events in the environment, and
may refer to the sensing of action/motion completion as
well as external events in the environment. The user input
language, such as that presented in [20], must therefore
allow distinguishing between a reference to πa and πc

a in
safety conditions; this is discussed further in Section VI.

Table I presents the LTL formulas corresponding to the
specification for Example 1 before and after proposition re-
placement. Notice that, as long as the action of turning on the

3Note that this paper considers actions other than motion to have on and off
modes only, but the approach extends to other types of actions. For example,
the intermediate stages of the camera turning on could be modeled separately,
such as sensor cleaning, battery check, detecting external memory, etc.

camera has not completed, the robot is allowed to stop the
controller that is turning on the camera.

2) Robot Transition Relation: The allowed robot motion
now depends on the sensed location. Given a region r, let
Adj(r) denote the set of regions adjacent to r (including r
itself). ϕtrans in III-A then changes as follows:

ϕ̂trans =
∧

r�(©πc
r ⇒

∨
r′∈Adj(r)©ϕr′)

For Example 1,

ϕ̂trans = �(©πc
r1
⇒ (©ϕr1 ∨©ϕr2))

∧�(©πc
r2
⇒ (©ϕr2 ∨©ϕr1))

Here ϕr1 indicates that the robot is activating the controller
to move towards r1 and not activating the controller to move
towards r2 (i.e. ϕr1 = πr1∧¬πr2 ); ϕr2 is defined symmetrically.
The first conjunct in the above transition formula specifies that
when the robot senses that it will be in r1 in the next time
step (i.e. ©πc

r1
is true), it can either stay in r1 or activate the

controller for moving towards r2 (since the two regions are
adjacent); the second conjunct is similarly defined for when
the robot is in r2..

The new transition formula ϕ̂trans is included as a subfor-
mula of ϕ̂s. The specification resulting from the transforma-
tions in Sections V-B1 and V-B2 is denoted ϕ̂ = ϕ̂e⇒ ϕ̂s.

3) Sensor Assumptions: Assumptions on the completion
propositions model the effects of the robot activating its
various controllers:

ϕc =
∧
r
�(πc

r ⇔
∧

r′ 6=r

¬π
c
r′) (1)

∧
∧
r

∧
r′∈Adj(r)

�(πc
r ∧ϕr′ ⇒ (©π

c
r ∨©π

c
r′)) (2)

∧
∧
a
�(πc

a ∧πa⇒©π
c
a) (3)

∧
∧
a
�(¬π

c
a ∧¬πa⇒©¬π

c
a) (4)

Conjunct (1) enforces mutual exclusion between the phys-
ical locations of the robot. Conjunct (2) governs how the
location of the robot can change in a single time step in
response to the activation of the motion controllers. Conjuncts
(3-4) govern the completion of other actions in response to
the activation of the corresponding controllers. In Example 1,

ϕc = �(πc
r1
⇔¬π

c
r2
)∧�(πc

r2
⇔¬π

c
r1
) (5)

∧�(πc
r1
∧ϕr1 ⇒©π

c
r1
) (6)

∧�(πc
r1
∧ϕr2 ⇒©π

c
r1
∨©π

c
r2
) (7)

∧�(πc
r2
∧ϕr2 ⇒©π

c
r2
) (8)

∧�(πc
r2
∧ϕr1 ⇒©π

c
r2
∨©π

c
r1
) (9)

∧�(πc
camera∧πcamera⇒©π

c
camera) (10)

∧�(¬π
c
camera∧¬πcamera⇒¬©π

c
camera) (11)

For example, conjunct (7) states that if the robot is in r1 (i.e.
πc

r1
is true) and is activating the controller to move to r2 (ϕr2 ),

then in the next time step it is either still in r1 (πc
r1

is true)
or has reached r2 (πc

r2
is true). Conjunct (10) states that if the

camera is already on and is being turned on, it will stay on.
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4) Fairness conditions: In addition to the above safety
conditions, the robot’s environment must be constrained in
order to ensure that every action/motion eventually completes,
i.e. that the environment is in some sense “fair”. A first
approach is to add an environment assumption that every
activation or deactivation of a controller eventually results in
completion, i.e. the fairness conditions

� �(πa⇒©π
c
a) (12) � �(¬πa⇒©¬π

c
a) (13)

for every action a or region r.
However, this adds two fairness assumptions to the speci-

fication for every action. Since the synthesis algorithm scales
linearly with the number of fairness assumptions [10], it is
important to minimize the number of added assumptions. This
can be achieved by introducing a single fairness condition that
incorporates the possibility that the robot is forced to “change
its mind” by events in the environment. For this purpose, two
new Boolean formulas ϕ

completion
a and ϕ

change
a are defined for

each action a as follows:

ϕ
completion
a = (πa∧©πc

a)∨ (¬πa∧¬©πc
a)

ϕ
change
a = (πa∧¬©πa)∨ (¬πa∧©πa)

Formula ϕ
completion
a holds when the activation (or de-

activation) of the controller for a has completed execution.
Formula ϕ

change
a holds when the robot changes its mind (such

as by toggling the camera) due to events in the environment. A
single pair of formulas ϕ

completion
loc ,ϕchange

loc suffices for motion
since locations are mutually exclusive and the robot cannot try
to move to two locations at once:

ϕ
completion
loc =

∨
r(ϕr ∧©πc

r ) ϕ
change
loc =

∨
r(ϕr ∧¬©ϕr)

The complete fairness assumption added is:

ϕ
a
f air =� �(ϕ

completion
a ∨ϕ

change
a ) (14)

Note that every execution satisfying both fairness conditions
(12) and (13) described above for activation and deactivation
also satisfies (14) and vice versa. Moreover, there is only
one such assumption added for each action a (in the case
of Example 1, there is one such assumption for the camera).
Additionally, there is one assumption ϕ loc

f air for motion. For
Example 1,

ϕcamera
f air = � �[(πcamera∧©πc

camera)∨ (¬πcamera∧¬©πc
camera)

∨ (πcamera∧¬©πcamera)∨ (¬πcamera∧©πcamera)]
ϕ loc

f air = � �[(ϕr1 ∧©πc
r1
)∨ (ϕr2 ∧©πc

r2
)

∨ (ϕr1 ∧¬©ϕr1)∨ (ϕr2 ∧¬©ϕr2)]

Given a task specification ϕ = (ϕe ⇒ ϕs), the LTL spec-
ification used to synthesize a controller (after proposition
replacement, changes to the robot transition relation, and
adding sensor safety and fairness assumptions) is now:

ϕnew = ϕ̂e∧ϕc∧
∧

a ϕa
f air ∧ϕ loc

f air⇒ ϕ̂s

C. Synthesis

Since the formulas ϕ
completion
a and ϕ

change
a in the proposed

liveness condition ϕa
f air govern both current and next time

steps, the original synthesis algorithm in [10] cannot be

applied as-is to synthesize an implementing automaton for
the specification ϕnew. Liveness conditions that incorporate
temporal formulas with both current and next time steps are
handled by changing the computation of the set of robot-
winning states as follows.

The µ-calculus is first extended with an operator C that
maps a set of transitions to the set of states from which the
robot can enforce those transitions. First define an operator �
such that J�ϕK= {(q,q′) | q′ ∈ JϕK}. Informally, � returns all
pairs of current and next states in the automaton whose second
state is in JϕK. Boolean operators can be used on these sets
of current and next state pairs in the obvious way.

Now define C such that, given a formula ϕ , JC ϕK =
• {q ∈ Q | ∀x ∈ δX (q),∃q′ ∈ δ (q,x) s.t. (q,q′) ∈ J�ϕK}

if ϕ describes a set of states
• {q ∈ Q | ∀x ∈ δX (q),∃q′ ∈ δ (q,x) s.t. (q,q′) ∈ JϕK}

if ϕ describes a set of current-next pairs of states
Then the new set of winning states is characterized by

ϕ̂win =

ν


Z1
Z2
...

Zn

 ·


µY.
(∨m

i=1 νX .C(J1
s ∧�Z2∨�Y ∨¬Ji

e∧�X)
)

µY.
(∨m

i=1 νX .C(J2
s ∧�Z3∨�Y ∨¬Ji

e∧�X)
)

...
µY.

(∨m
i=1 νX .C(Jn

s ∧�Z1∨�Y ∨¬Ji
e∧�X)

)


Lemma V.1 Algorithm 1 with the formula ϕwin replaced by
ϕ̂win (denoted Algorithm 1[ϕwin/ϕ̂win]) yields a sound and
complete synthesis algorithm for formulas ϕ that admit the
© operator in ϕ

g
e and ϕ

g
s .

Proof: The only difference from ϕwin in Section III is
to replace (J j

s ∧Z j⊕1 ∨Y ∨ ¬Ji
e ∧X) with C(J

j
s ∧

�Z j⊕1 ∨ �Y ∨ ¬Ji
e ∧ �X). The intermediate stages of the

computation of ϕwin now compute states that can force goal
transitions (rather than reach goal states). Therefore, every
Aϕ synthesized by Algorithm 1 guarantees fulfillment of these
goal transitions, i.e. goals that admit ©. By the completeness
of the original synthesis algorithm in [10], and the fact that the
only additional restriction is this property, Algorithm 1 returns
a strategy if one exists. Note that if none of the robot liveness
conditions contain the © operator, the computations of ϕwin
and ϕ̂win are identical.

Theorem V.2 Algorithm 1[ϕwin/ϕ̂win], with input ϕnew con-
structed from ϕ as in Section V-A, yields a sound and complete
synthesis procedure to solve Problem 2.

Note that it is possible to use the original synthesis algo-
rithm (which only allows simple Boolean formulas in liveness
conditions) to synthesize a controller by introducing a new
proposition, π

completion,change
a , and the safety condition:

�(©π
completion,change
a ⇐⇒ (ϕ

completion
a ∨ϕ

change
a ))

This allows the additional liveness to instead be written as

ϕ
′
f air =� �π

completion,change
a

However, this introduces one new proposition per robot action.
The running time of the synthesis algorithm scales polyno-
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mially with the size of the state space, which in turn scales
exponentially with the number of propositions.

Even with the above change to the synthesis algorithm,
one environment proposition must be added per robot action
(corresponding to the sensor for action completion). In the
worst case, the time taken for synthesis is therefore still
increased by a factor of 2|Y| over the original approach4.
However, if we do not use the enhanced synthesis algorithm
presented above, the increase is by a factor of 4|Y| (since two
new propositions are required per action).

D. Continuous Execution

Given a state q, observed sensor values x∈ 2X and the corre-
sponding next state q′ in the automaton, the transition (q,q′) is
executed by simultaneously invoking the controllers associated
with every action or location proposition that changes value
from q to q′. Note that the current sensed state of the system,
given by the completion propositions in x, determines which
actions can be activated in q′. Transitions in the automaton
execute instantaneously, as they correspond to activation or
deactivation of controllers, but the controllers themselves may
take several discrete transitions to finish executing.

E. Resulting Behavior

Fig. 5 depicts an excerpt of the automaton synthesized for
Example 1 using the approach presented in this section. The
full automaton has 11 states and is omitted for conciseness.
Negated sensor labels are omitted from the transitions for a
cleaner presentation. The label c ri represents πc

ri
.

In state q0, the robot is trying to stay in r1 (as indicated by
the action πr1 being true), and not activating its camera (πcamera
is false); note that q0 ∈ Q0. Consider the transition (q0,q1),
which is activated when the robot is in q0 and does not sense
a person. The robot is still in r1 (indicated by πc

r1
being true

on the transition into q1. It is now trying to go to r2, indicated
by πr2 being true in q1. When in q1, if the robot still does not
sense a person, it either moves to q3 or stays in q1 depending
on whether it has reached r2 yet (i.e. depending on the truth
value of πc

r2
). On the other hand, suppose the robot senses a

person in q1 before it has reached r2, the transition enabled
is instead (q1,q2). In state q2, the robot is still activating the
motion controller to reach r2, but is now additionally activating
the camera; the transition to q4 is taken once the robot is in
r2. Finally, the transition (q1,q5) is taken if the robot senses
a person exactly as it reaches r2 (as indicated by both sensor
propositions πperson and πc

r2
being true on that transition).

Note that in the continuous execution of the above automa-
ton, all the controllers are invoked at the same time. For
example, in the transition (q0,q2), which is activated when
the robot is in q0 and senses a person, the controllers for
moving from r1 to r2 and for turning on the camera are being
activated simultaneously, just as in Fig. 4(a). Any difference in
their completion times is captured by the corresponding sensor
propositions. Even if the person disappears before the motion

4This can be reduced if some robot actions are mutually exclusive and can
be encoded with a bit vector, as is true for motion between regions.

Fig. 5: Excerpt of automaton synthesized for Example 1 with
Approach 3. Negated propositions are omitted from the transi-
tions for clarity.

from r1 to r2 is completed, the transition (q0,q2) is still taken
(followed by a transition out of q2 that corresponds to the
person no longer being seen), and the camera is still being
activated in q2. This ensures that the person is not ignored,
since the fact that the camera is being turned on is now
explicitly represented, even though the person has disappeared.

VI. COMPARISON OF APPROACHES 1-3
Table II summarizes the differences between Approaches

1, 2 and 3 based on the assumptions they make about action
execution times and the operating environment; the complexity
of the synthesis algorithm; and the corresponding continuous
execution.

The computational complexity of the synthesis algorithm
presented in [10], which forms the basis for synthesis in all
three frameworks, is O(mnΣ2), where m and n are the number
of environment liveness conditions and system goals in the
specification, respectively, and Σ denotes the state space corre-
sponding to truth assignments to X and Y . The new algorithms
presented in Sections IV and V are also quadratic in the size
of the state space and linear in the number of environment
and system liveness conditions. However, for Approach 3, the
size of the state space is larger by a factor of O(2|Y|), and the
number of liveness conditions grows by O(|Y|). This results
in a corresponding increase in synthesis time and size of the
synthesized automata. For instance, the automaton synthesized
for Example 1 has 3 states using Approach 1, 4 states using
Approach 2, and 11 states using Approach 3; synthesis for
this example takes roughly 4 times as long using Approach
3 as with the other two approaches. A thorough comparison
of runtimes and solution sizes is conducted on the following
example, and appears in Table III.

Example 3 Consider the workspace depicted in Fig. 6. The
robot starts in the region marked start and has to visit
goal. However, if it sees a stop sign in region ri (for i ∈ R =
{1,2,4,5,7,8}), it cannot pass through that room. The robot
also has to respond to seeing a person by turning on a camera,
except in r3, where the camera cannot be turned on. Addition-
ally, the robot should wave when passing through r6. There
will never be stop signs in both rtop and rbottom at the same
time for the pairs (top,bottom) ∈ P = {(1,2),(4,5),(7,8)}
(so the robot can always progress forward). There are initially
no stop signs, and the robot starts with its camera turned off.
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Approach Assumptions |Σ| Synthesis
Complexity

Continuous Execution Consequence of Vio-
lated Assumptions

1 Instantaneous actions 2|X |+|Y| O(mnΣ2) Action activation staggered
to ensure simultaneous
completion

Delayed response,
unsafe states

2 Two action speeds,
environment constant
on transitions

2|X |+|Y| O(mnΣ2) Simultaneous action
activation, environment
ignored on transitions

Lack of response
during transitions

3 No timing-related
assumptions

2|X |+2|Y| O((m+ |Y|)nΣ2) Simultaneous action
activation

NA

TABLE II: Comparison of the three synthesis frameworks discussed. Variables m and n are the number of environment liveness
conditions and system goals in the specification ϕ , respectively, X and Y denote the environment and system variables,
respectively, and Σ denotes the state space corresponding to truth assignments to these variables.

With the approach in [4], the corresponding specification is:

∧
i∈R¬πstop ri #Env Initial

(Env starts with no stop signs anywhere)
∧

∧
(i, j)∈P�(¬(πstop ri ∧πstop r j)) #Env Safety

(There will never be stop signs in both ri and rj)
⇒

(ϕstart∧¬πcamera∧¬πwave) #Robot Initial
(Robot starts in start with camera and waving off)

∧
∧

i∈R�(©πstop ri ⇒¬©ϕri) #Robot Safety
(Do not go to ri if you sense a stop sign in ri)

∧ �(ϕr3 ⇒¬πcamera) #Robot Safety
(Do not turn on the camera in r3)

∧ �(©πperson∧¬ϕr3 ⇒©πcamera) #Robot Safety
(Activate the camera if you see a person except in r3)

∧ �(ϕr6 ⇒©πwave) #Robot Safety
(Wave when in r6)

∧ � �(ϕgoal) #Robot Liveness
(Visit goal infinitely often)

Approach 1: This specification is realizable under the assump-
tion of instantaneous robot actions, via the synthesis approach
in [4]. However, consider what happens under the continuous
execution paradigm in Approach 1 when the robot is in start,
and sees a stop sign in r1. The robot will start to move towards
r2. Suppose that before the robot has entered r2, the stop
sign in r1 disappears but one appears in r2. The robot will
abort the transition from start to r2 and start heading to r1,
taking a different discrete transition instead. If the stop sign’s
location changes faster than the robot can change directions
and move, the robot will be trapped in start, because it
will keep changing its mind between the above two discrete
transitions. The same problem manifests itself when the robot
is in r3 and r6. This is therefore a high-level task that produces
a controller under the synthesis approach in [4], but whose
physical execution does not accomplish the specified behavior
because of an inadequate modeling of the underlying physical
system. This discrepancy is due to the fact that the synthesis
approach in [4] assumes that when πstop r1 becomes true, the
robot can move from start to r2 instantaneously — this
assumption is violated in practice.
Approach 2: With Approach 2, the specification is unrealiz-

able. The reason for this is that the robot always needs to be
able to stay in place if it is turning on the camera or waving,
since these fast actions will complete first. This means that a
stop sign cannot appear in the robot’s current room. Adding
the assumption �(©ϕr1 ⇒ ¬©πstop ri) to the environment
allows synthesis to succeed. However, now if the stop sign
changes location as the robot is moving, this change will
simply be ignored, and the robot will continue on to r2. This
results in unsafe behavior, because the robot will end up in a
room with a stop sign.
Approach 3: With the discrete abstraction, specification trans-
formation and execution paradigm of Approach 3, the robot
initial condition in the above specification changes to ϕc

start∧
¬πc

camera ∧¬πc
wave, and the robot goal becomes � �(ϕc

goal);
similar changes apply to the rest of the specification to con-
form to the new timing semantics. Here again, the assumption
that a stop sign will not be seen in the robot’s current room
is required; this is expressed as the environment assumption
�(©ϕc

ri
⇒ ¬©πstop ri). This specification (with the addi-

tional formulas introduced in Section V) is unrealizable, and
no automaton is obtained. In this example, this is the safer,
more desirable outcome, since there exists an environment
strategy that toggles the stop signs between r1 and r2 and
prevents the robot from fulfilling the specification. Using
a timing-aware synthesis algorithm highlights this problem,
and hints that we may need stronger assumptions on the
environment in order to synthesize a controller.

One possible solution is to modify the specification to ex-
plicitly exclude the above pathological case, by adding safety
assumptions to the environment that prevent the stop sign from
appearing in room ri while the robot is in motion towards
ri, i.e., � �((ϕri ∧©¬ϕc

ri
)⇒¬©πstop ri). This ensures that

the robot can always move towards the goal region, making
the specification realizable again. In this example, waving
can be modeled as an instantaneous action, since it doesn’t
interact with other actions. As long as the waving controller is
turned on when the robot enters r6 (i.e. �(ϕc

r6
⇒©πwave)), its

completion is of no consequence. This reduces the number of
added variables, and hence the running time of the synthesis
algorithm. This shows that it is sometimes advantageous to
reason about when the timing of continuous action execution
is inconsequential. The set of actions that can be modeled as
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Approach #Conjuncts Time (in secs) #States

1 40 0.12 98

2 46 0.14 98

3 100 2.18 552

TABLE III: Specification length, synthesis time and automaton
size for Example 3

instantaneous is currently a user-defined parameter; determin-
ing this automatically from the specification is a direction of
future work.
Simulations: Fig. 6 diagrams one simulated run of the au-
tomaton synthesized for Example 3 using each of the three
approaches.
• The run in Fig. 6(a) is synthesized using Approach 1. The

robot (which begins in start) senses a stop sign in r1
and so moves to r2. On its way to r2, it senses a person,
so once it arrives in r2 it activates the camera. The robot
then moves to r3, turning the camera off once it enters r3.
It passes through r5, and when it arrives in r6, it waves.
It then sees a stop sign in r8 and so passes through r7 to
reach the goal.

• The run in Fig. 6(b) is synthesized using Approach 2.
Now when the robot senses a person on its way to r2, it
immediately turns on the camera (so the camera turns on
while the robot is still in r1). The robot turns the camera
off as it starts moving towards r3. It passes through r5
as before, and starts waving as soon as it starts moving
towards r6. As before, it sees a stop sign in r8 and passes
through r7 to reach the goal.

• The run in Fig. 6(c) is synthesized using Approach 3. On
its way to r2, the robot senses a person and activates the
camera controller. The camera turns on while the robot
is in r2. The robot deactivates the camera as it passes
through r3, but the camera only turns off when the robot
is in r5. When it arrives in r6, it activates the controller
for waving, which completes immediately.

Table III compares the three approaches based on specifica-
tion length, synthesis time and automaton size for Example 3.
Synthesis was performed using implementations of the three
versions of Algorithm 1 in the slugs synthesis tool5 on a
1.3 GHz Intel Core i5 processor with 8GB of RAM.
Discussion: As illustrated in the above example, it may be
the case that a specification is synthesizable in one synthesis
framework but unsynthesizable in another. Recent work in
[22], [23] has addressed the question of providing the user
with feedback on a specification that has no implementing
controller. In the situation described above, the user can now
be alerted to the fact that the timing semantics of controller
execution are responsible for the unsynthesizability of the
specification, since unsafe intermediate states may occur. An
unsynthesizable specification usually indicates that one or
more assumptions are necessary in order to enable synthesis.
For example, if a specification is not synthesizable under
Approach 2 or 3, the assumption of instantaneous action

5Available at https://github.com/ltlmop/slugs

(a) Approach 1

(b) Approach 2

(c) Approach 3

Fig. 6: Simulated trajectories for Example 3.

execution may be required so that Approach 1 can be used.
Future research will analyze cases of unsynthesizability aris-
ing from the specific timing semantics chosen for controller
synthesis, and present users with this information in a suitable
manner. An additional direction to investigate is the automatic
addition of environment assumptions to make the specification
synthesizable. In Example 3, for instance, adding the environ-
ment fairness assumption � �(πc

r4
) results in a controller by

explicitly requiring the environment to eventually let the robot
through to r4.

VII. CONCLUSIONS

This paper identifies and addresses a major challenge of
applying formal methods in the physical domain of high-level
robot control, namely that of achieving correct continuous
behavior from high-level specifications when the low-level
controllers have different execution durations. Three different
approaches to timing semantics for controller synthesis are
compared on the basis of the assumptions they make about
the execution of low-level action controllers. Assumptions
range in strength from instantaneous actions, to the case where
robot actions are either fast or slow, to controllers whose
relative completion times are unknown. The approaches are
compared on factors including the complexity of the resulting
synthesis algorithm, reactivity to sensor inputs, and the safety
of intermediate states arising during execution. Future work
includes analyzing specifications that have no implementation
because of the timing semantics of the desired controllers, and
presenting this information to users.
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