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Explaining Impossible High-Level Robot Behaviors
Vasumathi Raman, Hadas Kress-Gazit

Abstract—A key challenge in robotics is the generation of con-
trollers for autonomous, high-level robot behaviors comprising
non-trivial sequences of actions including reactive and repeated
tasks. When constructing controllers to fulfil such tasks, it is
often not known a priori whether the intended behavior is even
feasible; plans are modified on the fly to deal with failures
that occur during execution, often still without guaranteeing
correct behavior. Recently, formal methods have emerged as a
powerful tool for automatically generating autonomous robot
controllers that guarantee desired behaviors expressed by a class
of temporal logic specifications. However, when the specifica-
tion cannot be fulfilled, these approaches do not provide the
user with a source of failure, making the troubleshooting of
specifications an unstructured and time-consuming process. This
paper describes an algorithm for automatically analyzing an
unsynthesizable specification in order to identify causes of failure.
It also introduces an interactive game for exploring possible
causes of unsynthesizability, in which the user attempts to fulfill
the robot specification against an adversarial environment. The
proposed algorithm and game are implemented as features within
the LTLMoP toolkit for robot mission planning.

Index Terms—IEEEtran, journal, LATEX, paper, template.

I. INTRODUCTION

THE goal of this paper is to provide explanations for high-
level autonomous robot behaviors for which no imple-

menting control program exists. These high-level behaviors
include tasks comprising a non-trivial sequence of actions,
potentially including reacting to external events and repeated
goals; examples include search and rescue missions and the
DARPA Urban Challenge [1]. The usual approach to achieving
control for such behaviors is to hard-code the high-level
aspects, and use path-planning and other low-level techniques
during execution. However, with such approaches, it is often
not known a priori whether the proposed implementation
actually captures the high-level requirements, or whether the
intended behavior is even achievable. This motivates the ap-
plication of formal methods to guarantee that the implemented
plans will produce the desired behavior.

A number of frameworks have recently been proposed for
the verifiable integration of high-level planning with contin-
uous control. Most rely on an abstraction of the underlying
system as a discrete transition system, and use model checking
[2] to synthesize control laws (e.g. [3], [4], [5], [6]) on this
discrete model. The desired properties are usually expressed
using some flavor of temporal logic, such as Linear Tempo-
ral Logic (LTL)[7], which is expressive enough to describe
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specifications that include the desired reactive constraints and
sequencing of goals, and allows synthesis of hybrid controllers
under several frameworks.

Some recent work has applied efficient synthesis techniques
such as [8] to automatically generate provably correct, closed
loop, low-level robot controllers that satisfy high-level reactive
behaviors specified as LTL formulas [9], [10]. Specifications
describe the robot’s goals and assumptions on the environment
it operates in, using a discrete abstraction. The robot con-
trollers generated represent a rich set of infinite behaviors, and
are provably correct-by-construction: the closed loop system
they form is guaranteed to satisfy the desired specification in
any admissible environment (i.e. any environment that satisfies
the modeled assumptions).

In the above formal approaches, when the specification
is feasible a controller is generated; however, when there
exist admissible environments in which the robot fails to
achieve the desired behavior, controller synthesis fails – such
a specification is called unsynthesizable. An unsynthesizable
specification is either unsatisfiable, in which case the robot
cannot achieve the desired behavior no matter what happens
in the environment (e.g. if the task requires patrolling a
disconnected workspace), or unrealizable, in which case there
exists at least one environment that can thwart the robot.
For example, if the environment can disconnect an otherwise
connected workspace, such as by closing a door, a specifi-
cation requiring the robot to patrol the workspace is merely
unrealizable rather than unsatisfiable.

When the specification is unsynthesizable (and there exists
no implementing controller), synthesis-based approaches fail
to produce the desired behavior, but do not typically provide
the user with the exact source of failure. Moreover, even when
synthesis is possible, the generated automaton (which fulfills
the specification) may produce undesirable or trivial behavior,
such as a vacuous controller that does nothing, for reasons
involving unsatisfiability or unrealizability of the environment
assumptions. This can make troubleshooting a specification
an ad hoc and unstructured process. This paper describes an
algorithm for automatically analyzing an LTL specification to
identify and focus the user’s attention on relevant portions
thereof. The goal is to enable iterated specification analysis
and modification, and facilitate construction of a controller
that achieves the user-intended behavior.

By the completeness of the synthesis algorithm in [8], when
a specification is unsynthesizable, there exists an admissible
environment strategy that demonstrates the system’s failure to
achieve the specified behavior. This environment strategy is
referred to as the counterstrategy, following [11]. In this work,
counterstrategy generation is leveraged, along with other tools
like Boolean satisfiability testing, to provide explicit feedback
on unrealizable specifications in the robot control domain.
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Feedback is provided by highlighting flawed portions of the
user-defined specification (either desired system behavior or
environment assumptions), and identifying cases of unex-
pected and undesirable behavior such as the trivial solutions
mentioned earlier. The system and environment components
of the specification are considered separately, and checks per-
formed on subcomponents as well as the entire specification.
In addition, the specification designer is allowed to interact
with the counterstrategy via a domain-specific interface that
provides insight on unintuitive reasons for unrealizability by
demonstrating the precise environment actions that thwart the
robot.

The automated analysis procedures described here are im-
plemented within Linear Temporal Logic MissiOn Planning
(LTLMoP)[12], [13], an open source, modular, Python-based
toolkit that allows a user to input structured English specifica-
tions describing high-level robot behavior, and automatically
generates and implements the relevant hybrid controllers using
the approach of [9]; the synthesized controllers can be embed-
ded within a simulator or used with physical robots. The most
recent version of LTLMoP can be downloaded online1.

The paper is structured as follows. Section II reviews
necessary preliminaries, and Section III provides a formal
problem statement. Section IV describes the types of unsatis-
fiability and unrealizability handled by this work, and provide
illustrative examples. Sections V and VI contains the main
contributions: an algorithm for identifying unsatisfiable or
unrealizable components in an unsynthesizable specification,
and an interactive game for exploring the reasons for failure
in unrealizable specifications; both sections include examples
demonstrating the respective implementations in LTLMoP.
Section VII situates this paper in the context of related work.
The paper concludes with a description of future directions in
Section VIII.

II. BACKGROUND

The tasks considered in this work involve a robot oper-
ating in a known workspace, whose behavior (motion and
actions) depends on information gathered at runtime from its
sensors about events in the environment. The robot reacts to
these events, which are captured by its sensors, in a manner
compliant with the task specification, by choosing from a set
of actions including moving between adjacent locations. The
tasks may also include infinitely repeated behaviors such as
patrolling a set of locations.

Example 1. Consider a “hide-and-seek” scenario. The goal
is to construct a controller for a robot to play hide and seek in
the workspace depicted in Fig 1. The robot starts by counting
while the other player hides. When it hears the ready whistle,
it takes on the role of seeker and looks for the other player.
When it has found the other player, it reverts to counting while
the other player hides, and repeats the cycle.

Constructing a controller for this task requires a map of
the workspace, in this case a house, with regions of interest
marked and labeled. Actions the robot can take are hiding,

1http://ltlmop.github.com

seeking, and counting while the other player hides. The robot
can sense when it has found the target (when in a seeking
role), when it has been found (when in a hiding role), and
hear the ready whistle when the other player is hiding (i.e.
when the robot is in a counting role). Mutual exclusion is
required between hiding, seeking, and counting, and between
activation of the three sensors (i.e. the robot can never both
find the target and be found at the same time). Finally, a formal
specification of when the robot takes on the roles of hiding,
seeking, and counting is required, along with a description of
what these roles entail: when seeking, the robot should visit
all rooms until the target has been found; when counting or
hiding it can be in any room.

Consider the specification shown in Listing 1, intended to
produce a controller for the above behavior. Sentences in a
structured language [12] describe the desired robot behavior
and assumptions on the environment. However, this specifica-
tion is unsynthesizable, and there exists no controller to im-
plement the desired behavior in every admissible environment,
i.e. every environment that fulfils the specified assumptions;
the reason for unsynthesizability is not obvious without further
analysis.

Listing 1 Example of unsynthesizable hide-and-seek specifi-
cation, analyzed in Section IV.

# Initial conditions
Env starts with false
Robot starts in porch with counting and not seeking and not

hiding

# Mutual exclusion of sensors
Always not whistle or not found_target
Always not found_target or not been_found
Always not been_found or not whistle

# Mutual exclusion between roles
Always not seeking or not hiding
Always not hiding or not counting
Always not been_found or not seeking

# Switching between roles
seeking is set on whistle and reset on found_target
hiding is set on found_target and reset on been_found
counting is set on been_found and reset on whistle

# Patrol goals
If you are activating seeking then visit all rooms
If you are not activating seeking then go to any rooms

Given the inherent continuous nature of problems in
robotics, applying formal methods to the construction of high-
level robot controllers requires a discrete abstraction of the
problem to enable description with a formal language. Details
on the discrete abstraction used in this work can be found in
[9]. The formal language used for high-level specifications in
this work is Linear Temporal Logic (LTL) [7].

A. Linear Temporal Logic

Syntax: Let AP be a set of atomic propositions. Formulas are
constructed from π ∈ AP according to the grammar:

ϕ ::= π|¬ϕ|ϕ ∨ ϕ|2ϕ|ϕUϕ

where ¬ is negation, ∨ is disjunction, 2 is “next” , and U
is “until”. Boolean constants True and False are defined as
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(a) Real Workspace (b) Polygonal Decomposition, rotated
90◦clockwise. Thick lines are walls

(c) Adjacency Graph

Fig. 1: Workspace Abstraction and Representation [14]

usual: True = π ∨ ¬π and False = ¬True. Conjunction
(∧), implication (⇒), equivalence (⇔), “eventually” (1ϕ =
TrueUϕ) and “always” (0ϕ = ¬1¬ϕ) are derived.
Semantics: The truth of an LTL formula is evaluated over
executions of a finite state machine representing the system.
An execution is viewed as an infinite sequence of truth
assignments to π ∈ AP ; a formula is satisfiable if it holds
for all executions. Informally, the formula2ϕ expresses that
ϕ is true in the next “step” or position in the sequence, and the
formula ϕ1 U ϕ2 expresses the property that ϕ1 is true until ϕ2

becomes true, and is true only if ϕ2 does eventually become
true (strong until). The (infinite) truth assignment sequence
σ satisfies formula 0ϕ if ϕ is true in every position of the
sequence, and satisfies 1ϕ if ϕ is true at some position of
the sequence. Sequence σ satisfies the formula01ϕ if ϕ is
true infinitely often. For a formal definition of the semantics,
the reader is referred to [2].

LTL is appropriate for specifying robotic behaviors because
it provides the ability to describe changes in the truth values
of propositions over time. However, to allow users who may
be unfamiliar with LTL to define specifications, LTLMoP in-
cludes a parser that automatically translates English sentences
belonging to a defined grammar [15] into LTL formulas; the
grammar includes reactive conditionals, repeated goals, and
non-projective locative prepositions such as “between” and
“within”. This allows users to define desired robot behaviors
(including reactive behaviors, e.g., “if you find the target,
switch to a hiding role”) and specify assumptions about the
behavior of the environment (e.g., “the target will never be
found in the kitchen”) using an intuitive descriptive language
rather than the underlying formalism. There are two primary
types of properties allowed in a specification – safety prop-
erties, which guarantee that “something bad never happens”,
and liveness conditions, which state that “something good
(eventually) happens”. These correspond naturally to LTL
formulas with operators “always” (0) and “eventually” (1).

B. Discrete Abstraction

Fig. 1 shows the three stages of workspace abstraction for
the “hide-and-seek” scenario, from the real environment to
a set of convex polygons, and then as a graph with edges
connecting adjacent regions. In the discrete abstraction of
the problem, the continuous reactive behavior of a robot is

described in terms of a finite set of propositions consisting of:
• πs for every sensor input s (e.g., πwhistle is true iff the

ready whistle is sensed)
• πa for every robot action a (e.g., πcounting is true iff the

robot is counting)
• πl for every location l (e.g., πbedroom is true iff the robot

is in the bedroom).
The set of sensor propositions (controlled by the environ-

ment) are denoted by X , and the set of action and location
(i.e., robot-controlled) propositions by Y . In Example 1,
X = {πwhistle, πfound target, πbeen found}, Y = {πporch,
πdeck, πbedroom, πdining , πliving, πkitchen, πhiding , πseeking ,
πcounting}. Propositions πfound target and πbeen found are
true when the robot senses that it has found the other player
and been found respectively, πhiding , πseeking , and πcounting
are true depending on the robot’s current role in the game.
Additionally, the formula ϕl = πl

∧
l′ 6=l ¬πl′ indicates that

the robot is in location l and not in any other location (i.e.,
locations are mutually exclusive). The possible motion of the
robot in the workspace based on the adjacency of the regions
is automatically encoded as part of the specification. Legal
transitions between adjacent regions are represented as edges
between vertices in a graph (with implicit self-loops), and then
encoded into a formula over location propositions.

In LTLMoP, in addition to the user-defined specification,
topological constraints of the discretized workspace (i.e.,
which regions are adjacent, and can be moved between) are
automatically encoded into the LTL formula to appropriately
constrain the possible motions of the robot. This is done by
encoding the valid transitions in a formula ϕtrans; in the above
example,

ϕtrans =
0(ϕporch ⇒2(ϕporch ∨ ϕliving ∨ ϕkitchen))
∧0(ϕdeck ⇒2(ϕdeck ∨ ϕbedroom ∨ ϕkitchen))
∧0(ϕbedroom ⇒2(ϕbedroom ∨ ϕdeck ∨ ϕliving))
∧0(ϕdining ⇒2(ϕdining ∨ ϕliving ∨ ϕkitchen))
∧0(ϕliving ⇒2(ϕliving ∨ ϕporch ∨ ϕbedroom ∨ ϕdining))
∧0(ϕkitchen ⇒2(ϕkitchen ∨ ϕdeck ∨ ϕdining ∨ ϕporch))

C. Controller Synthesis Overview

Fig. 2 provides an overview of the controller synthesis
procedure. A user-defined specification and description of the
environment topology is automatically parsed into a formula of
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Fig. 2: Controller synthesis overview [13]

the form ϕ = (ϕe ⇒ ϕs), where ϕe encodes any assumption
about the sensor propositions, and thus about the behavior of
the environment, and ϕs represents the desired behavior of the
system. ϕe and ϕs in turn have the structure ϕe = ϕe

i∧ϕe
t∧ϕe

g ,
ϕs = ϕs

i ∧ ϕs
t ∧ ϕs

g , where
• ϕe

i and ϕs
i are non-temporal Boolean formulas constraining

the initial value(s) for the sensor and system propositions
respectively.
• ϕe

t represents assumptions a user may define about possible
behaviors of the environment, and consists of a conjunc-
tion of formulas of the form 0Ai where each Ai is a
Boolean formula with sub-formulas in X ∪ Y ∪ 2X ,
where 2X = {2x1, ...,2xn}. Intuitively, formula ϕe

t

constrains the next sensor values2X based on the current
sensor X and system Y values. Similarly, ϕs

t represents the
robot’s required behavior (safety constraints); it consists of
a conjunction of formulas of the form 0Ai where each Ai

is a Boolean formula in X ∪Y ∪2X ∪2Y (the system’s
next state can depend on the environment’s current and next
states). ϕs

t also contains ϕtrans as a subformula.
• ϕe

g and ϕs
g represent assumptions on the environment and

desired goal behaviors for the system respectively. Both
formulas consist of a conjunction of formulas of the form
01Bi where each Bi is a Boolean formula in X ∪ Y .
In viewing these formulas as corresponding to system

and environment properties, this paper refers to ϕs
t and ϕe

t

as safety properties, and ϕs
g and ϕe

g as liveness properties.
Listing 2 provides the LTL translation of each sentence of
the specification in Listing 1, and identifies the corresponding
component of the resulting formula ϕ.

Given an LTL formula, the synthesis problem consists
of constructing an automaton whose behaviors satisfy the
formula, if such an automaton exists. For a synthesizable spec-

Fig. 3: Excerpt of “hide-and-seek” automaton.

ification ϕ, synthesis produces an implementing automaton
Aϕ, enabling the construction of a hybrid controller HAϕ that
produces the desirable high-level, autonomous robot behavior.
Fig. 3 shows an example of a synthesized automaton for
the hide-and-seek problem, using a modified version of the
specification in Listing 1, discussed in Section VIII. Each
state of the automaton is labeled by the location and action
propositions that are true in that state, and each transition is
labeled with sensor propositions that must be true for that
transition to be enabled. The reader is referred to [8] and
[9] for details of the synthesis procedure, and to [9], [12]
for a description of how the extracted discrete automaton is
transformed into low-level robot control. If no implementing
automaton exists, the desired behavior is unsynthesizable.

III. PROBLEM STATEMENT

Problem 1. Given a specification ϕ = (ϕe ⇒ ϕs), if
there does not exist a non-trivial implementing automaton Aϕ,
identify the subformulas ϕi

e, ϕ
t
e, ϕ

g
e , ϕ

i
s, ϕ

t
s and ϕg

s that are
responsible for the unsynthesizability or trivial solution.

Once the problematic subformulas are identified, the corre-
sponding structured English sentences should be highlighted
and presented to the user. Additionally, the user should be
presented with compelling evidence of the unsynthesizability,
enabling them to further understand the cause of failure.

IV. UNSYNTHESIZABLE SPECIFICATIONS AND
UNDESIRABLE BEHAVIOR

The specification in Listing 2 is unsynthesizable, and in
particular it is unrealizable, because an adversarial environ-
ment can force the robot into a safety violation by setting
πfound target to true and πwhistle to false when πcounting
is true; the robot will turn on its hiding behavior in the
next time step (2πhiding is set by line 13), but still be
counting (2πcounting required by line 12), and therefore
simultaneously satisfy2πhiding ∧2πcounting , violating the
safety condition in line 7 – the system thus has no legal next
state.
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Listing 2 Unsynthesizable specification from Listing 1, with corresponding LTL translation

# Environment initial condition Component of ϕe
i

1 Env starts with false ¬πwhistle ∧ ¬πfound target ∧ ¬πbeen found

# Robot initial condition Component of ϕs
i

2 Robot starts in porch with counting and not seeking and not hiding ϕporch ∧ πcounting ∧ ¬πseeking ∧ ¬πhiding
# Assumptions about the environment – mutual exclusion of sensors Component of ϕe

t

3 Always not whistle or not found target 0(¬2πwhistle ∨ ¬2πfound target)
4 Always not found target or not been found 0(¬2πfound target ∨ ¬2πbeen found)
5 Always not been found or not whistle 0(¬2πbeen found ∨ ¬2πwhistle)

# Robot safety – mutual exclusion between roles Component of ϕs
t

6 Always not seeking or not hiding 0(¬2πseeking ∨ ¬2πhiding)
7 Always not hiding or not counting 0(¬2πhiding ∨ ¬2πcounting)
8 Always not been found or not seeking 0(¬2πcounting ∨ ¬2πseeking)

# Robot safety – switching between roles Component of ϕs
t

9 seeking is set on whistle and reset on found target 0(πwhistle →2πseeking)
0(πfound target →2¬πseeking)
0(πseeking ∧ ¬πfound target →2πseeking)
0(¬πseeking ∧ ¬πwhistle →2¬πseeking)

10 hiding is set on found target and reset on been found · · ·
11 counting is set on been found and reset on whistle · · ·

# Patrol goals Component of ϕs
g

12 If you are activating seeking then visit all rooms
∧

r∈locations01(πseeking → ϕr)

13 If you are not activating seeking then go to any rooms 01
(
¬πseeking →

∨
r∈locations ϕr

)

A. Unsynthesizable Categories

As mentioned before, there are several possibilities to be
considered when reasoning about a specification that cannot
be synthesized, or one that results in generation of a controller
that does not behave as intended.

1) Unsatisfiability: Consider this simple illustrative
specification in the hide-and-seek scenario:

Always not porch 0¬2ϕporch (in ϕs
t )

Visit porch 01ϕporch (in ϕs
g)

This specification is not synthesizable, and in particular it
is unsatisfiable, since ϕs

t and ϕs
g are inconsistent no matter

what the environment does, and so the system has no winning
strategy.

2) Unrealizability: Now consider the following
specification (separate from the one above):

If you are sensing whistle then do porch
0(πwhistle ⇒2ϕporch) (in ϕs

t )

Depending on the current location, ϕtrans does not always
allow2ϕporch. For example, if the robot hears the whistle in
bedroom, it cannot reach porch in the next discrete step (since
it has to pass another region first). Therefore, if the system
hears the whistle, then there may be no further transitions that
satisfy the robot safety; the environment can therefore win
from some initial states (e.g. bedroom) by making πwhistle

true. This specification is unrealizable, but not unsatisfiable –
there are environment strategies for which the system achieves

the desired behavior, such as the environment that never sets
πwhistle to true.

Symmetric to system unrealizability is the case where a win-
ning system strategy prevents the environment from satisfying
the formula ϕe. Overloading terminology, the environment is
termed unrealizable in this case. For example, if the environ-
ment safety condition in the above example were to include
“If you were in porch then do not person and do person”, then
the environment would be unrealizable if the system can go
to the porch, and the system would win regardless of whether
it fulfilled its goals.

3) Undesirable Behavior after Synthesis: Consider the
same map again, with the following specification:

Always not porch 0¬2ϕporch (in ϕs
t )

Visit porch 01ϕporch (in ϕs
g)

Sense whistle and do not sense whistle
0(2πwhistle ∧2¬πwhistle) (in ϕe

t )

Here ϕe
t is unsatisfiable, so ϕe is unsatisfiable. Since the

antecedent of the implication is always false, the formula
ϕe =⇒ ϕs is satisfied by any automaton, and all initial
states are winning for the system, even though the system
itself is also unsatisfiable. The algorithm in [8] returns a trivial
automaton consisting of all the initial states, but no transitions
between states; in the case of the hide-and-seek example, this
is a single state, in which the robot is counting in the porch.
Since each state in the automaton has an implicit self-loop
in the continuous level implementation, a controller based on
this automaton would cause the robot to stay in the porch
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indefinitely – this is likely not the user-intended behavior.
The above examples demonstrate that when the algorithm

does not return an automaton, there is some ambiguity in what
went wrong. In particular, an unsynthesizable specification
ϕe =⇒ ϕs is either unrealizable or unsatisfiable. Even once
these two cases are distinguished, there is further ambiguity
surrounding the cause of the unsatisfiability/unrealizability of
the specification. In addition, if ϕe is unsatisfiable, then a
trivial automaton is obtained.

B. Causes of Failure
Section IV-A detailed the distinction between unsatisfiable

and unrealizable specifications. In either case, failure occurs
either if it is possible for the environment to steer the
corresponding two-player game into a state from which the
system has no valid move (as in Example IV-A2), or if the
environment can prevent the system from satisfying one of the
liveness conditions (goals) (as in Example IV-A1). The former
case is termed deadlock, and the latter case livelock.

C. Identifying Deadlock
Identifying deadlock calls for a characterization of the set of

“bad” states from which the environment can force the system
into a state such that every transition will violate the system
safety (in which case the system has no next move in the game
in [8]). Such a characterization of states can be expressed in
the modal µ-calculus, which extends propositional modal logic
with least and greatest fixpoint operators µ, ν [16]. The µ-
calculus over game structures is defined as in [8]. A formula
ϕ is interpreted as the set of states JϕK in which ϕ is true.
Under this interpretation, the logical operator 4 is defined
such that a state s is included in J4ϕK if the system can
force the play to reach a state in JϕK, regardless of how the
environment moves from s. For example, if the environment
safety condition includes “If you were in porch then do not
whistle”, then any state in which the system is in the porch
would be included in J4¬πwhistleK, since the environment
cannot activate πwhistle in the next state. Similarly, operator
3 is defined such that a state s is included in J3ϕK if the
environment can force the play to reach a state in JϕK.

The set of “bad” states is now characterized by the fix-
point formula µX. X ∨ 3X , and constructed by having
X initialized to FALSE and updated at each iteration with
X ← X ∨3X until two iterations are identical. Intuitively,
at each iteration of the fixpoint computation, the construction
adds in states such that the environment can force the system
into the “bad” set. The fixpoint set therefore characterizes all
states that can reach a system safety violation. If this set of bad
states intersects the initial states, then there is some initial state
from which the environment can eventually force the system
to violate its safety conditions, thereby winning the game.
Similarly, µX. X ∨4X characterizes the set of states from
which the system can force the environment into deadlock.

V. ALGORITHM FOR ANALYSIS OF SPECIFICATIONS

This section describes in detail the steps of of Algorithm 1
introduced in [14], for isolating sources of unsatisfiability/un-
realizability in the system and environment components of an

unsynthesizable or trivial specification; this paper provides de-
tails that were omitted from previous work for brevity. Given a
specification, properties of the synthesis problem are leveraged
to determine whether each of ϕe and ϕs is unrealizable or
unsatisfiable, and present the user with this information. Given
the input specification parsed into a suitable representation
of the environment (ϕe) and robot (ϕs) LTL formulas, a
series of tests are applied to determine whether each is
unrealizable or unsatisfiable. In LTLMoP, the presented al-
gorithm is implemented in the JTLV framework [17], with the
corresponding formulas for the initial conditions, transitions
and goals represented as Binary Decision Diagrams (BDDs)
[18]. The BDD corresponding to a formula is a compact
representation of the set of proposition value combinations
that satisfy that formula; this compact representation enables
efficient operations on these sets.

A. Synthesis and trivial automata

The following pseudocode describes the initialization of
variables from Algorithm 1 in [14]. If the specification ϕ
is realizable, a BDD representation of the set of all imple-
menting control automata AUT SET is synthesized using
the SY NTHESIS algorithm from [8], and a single such
automaton AUT is extracted. Note that in the BDD repre-
sentation, FALSE denotes the empty set, and TRUE denotes
the set of all automata. Otherwise, a set of all possible coun-
terstrategies CTR SET is obtained following a construction
COUNTERSTRATEGY , adapted from that presented in
[11]. If an automaton is synthesized, but has no transitions
(i.e. is trivial), the user is alerted to this fact.

Algorithm 1 Initialization of variables from Algorithm 1 in
[14]

1: ϕp
t =

∧
j0Ap

j , ϕ
p
g =

∧np
g

i=101Bp
i for p ∈ {s, e}

2: AUT SET ← SY NTHESIS(s, e)
3: if AUT SET ! = FALSE (spec. is synthesizable) then
4: AUT ← AUT SET
5: if AUT has no transitions then
6: flag as trivial
7: else
8: CTR SET ← COUNTERSTRATEGY (s, e)

B. Unsatisfiable initial conditions and transition relations

Recall that ϕe
t and ϕs

t consist of a conjunction of formulas
of the form 0Ai where each Ai is a Boolean formula, so for
either of these, an emptiness check on the BDD representing
the set of variable assignments satisfying ϕp

i

∧
iAi determines

whether the transitions in a single time step are satisfiable from
the initial condition. The following pseudocode checks for
the unsatisfiability of the initial conditions and the transitions
relation (safety) for both environment and system.

1) Unsatisfiability of transition relations over multiple
steps: The above check will not identify unsatisfiability of
following the transitions over multiple time steps; for exam-
ple, the transition relation 0(πhiding =⇒ 2πhiding) ∧
0(πhiding =⇒ ¬2πhiding) ∧ 0(¬πhiding =⇒
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Fig. 4: Analyzing an unsynthesizable specification

Algorithm 2 Initial conditions and transition unsatisfiability
tests from Algorithm 1 in [14]

9: if ϕp
i == FALSE then

10: player p has unsatisfiable initial conditions
11: if ϕp

i ∧
∧

iA
p
i == FALSE then

12: p has unsatisfiable transitions

2πhiding) is unsatisfiable when starting from the initial
condition ¬πhiding , because πhiding is true in the second time
step leading to no valid transitions (since any valid transition
would have to satisfy both πhiding and ¬πhiding); however
the analysis so far will not detect this. Such “multi-step”
unsatisfiability of the transitions is identified by computing
the set of environment counterstrategies (i.e. the strategies the
environment can use to find sensor inputs such that there
is no robot response fulfilling the specification), using the
counterstrategy synthesis algorithm in [11]. If every sequence
of environment moves is in this counterstrategy, then the
system must be unsatisfiable. In addition, if every sequence
of environment moves forces the system into deadlock (rather
than livelock), the system safety is unsatisfiable; this is
identified using a fixpoint computation as described earlier.
The symmetric case for multi-step unsatisfiable environment
transitions looks at the set of system winning strategies and
checks that every sequence of system actions is winning.

Algorithm 3 Multi-step unsatisfiability tests from Algorithm
1 in [14]
13: if ∀σ ∈ CTR SET (resp. ∀σ ∈ AUT SET ), σ leads to

deadlock then
14: s (resp. e) transitions are unsatisfiable from initial conditions

C. Unsatisfiable goals

The next steps of the algorithm check for unsatisfiability
of system and environment liveness conditions. Any liveness

Algorithm 4 Unsatisfiable goal tests from Algorithm 1 in [14]
15: for i := 1 to np

g do
16: if Bp

i == FALSE then
17: p goal i is unsatisfiable
18: for i := 1 to np

g do
19: if Bp

i ∧
∧

j A
p
j == FALSE OR 2Bp

i ∧
∧

j A
p
j ==

FALSE then
20: p is unsatisfiable between goal i and transitions

condition ϕp
g consists of a conjunction of clauses of the form

01Bi, and the safety ϕp
t consists of a conjunction of

formulas of the form 0Aj . So a contradiction in ϕp
g ∧ ϕ

p
t

implies that some01Bi is inconsistent with
∧

j0Aj , i.e.,
1Bi is inconsistent with

∧
j0Aj . The Ajs in the transition

formula govern proposition values in the current and next time
steps (as described in Section II-B), and in order for a goal
Bi to be satisfied infinitely often, it needs to be consistent
with each Aj in both the current and next time steps (so there
are valid transitions into and out of each goal state). This is
confirmed by checking Bi ∧

∧
j Aj and 2Bi ∧

∧
j Aj for

consistency – if either is inconsistent, then liveness condition
Bi cannot be fulfilled infinitely often while following the
transitions allowed by the safety.

1) Unsatisfiability of goals over multiple steps: The test in
Algorithm 4 is once again not complete, and detecting multi-
step unsatisfiability of the system (resp., the environment)
requires checking that every counterstrategy (resp., every
robot strategy) leads to livelock for the system (resp., the
environment). If the system is unsatisfiable due to livelock, the
environment can “lock” the system out of some liveness; the
faulty liveness can be identified by starting with no liveness
conditions and including them incrementally until synthesis
fails (this involves running the synthesizability check once for
each liveness condition, as in lines 23-31 in 5).

Algorithm 5 Unsatisfiable and unrealizable goal tests from
Algorithm 1 in [14]
23: for i := 1 to ns

g do
24: ϕsi

g =
∧i

k=101Bs
k, ϕ

si
t = ϕs

t , ϕ
si
i = ϕs

i

25: AUT SETi ← SY NTHESIS(si, e)
26: if AUT SETi == FALSE (unsynthesizable) then
27: CTR SETi ← COUNTERSTRATEGY (si, e)
28: if CTR SET == TRUE then
29: ith system goal inconsistent with transition relation
30: else if AUT SETi−1 ! = FALSE then
31: ith system goal is unrealizable
32: for i := ne

g to 1 do
33: ϕei

g =
∧ne

g

k=i01Be
k, ϕ

ei
t = ϕe

t , ϕ
ei
i = ϕe

i

34: AUT SETi ← SY NTHESIS(s, ei)
35: if AUT SETi ! = FALSE (synthesizable) then
36: if AUT SET == TRUE then
37: ith environment liveness inconsistent with transitions
38: else if AUT SETi+1 == FALSE then
39: ith environment liveness condition is unrealizable

If the environment counterstrategy is TRUE, then the sys-
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tem is in fact unsatisfiable due to the most recently added goal
(lines 28-29). A symmetric test for the environment runs the
synthesis algorithm starting with all environment liveness con-
ditions, and removes them one by one (lines 32-39). Similarly,
if every system strategy is winning, the current environment
goals must be unsatisfiable, and if removing an environment
liveness condition makes the specification unsynthesizable,
the system’s winning strategy involved falsifying the removed
environment liveness (36-37).

If the algorithm does not detect system unsatisfiability, the
system might still be unrealizable. To win from an initial
state of the game, the environment must either force the
system into deadlock (i.e. a safety violation) or livelock, in
which case the unrealizability is because some goal(s) cannot
be achieved while adhering to the transitions specified. As
described earlier, reachability analysis using fixpoint operators
suffices to check that there is some sequence of environment
actions that forces the system into deadlock, and likewise for
the system forcing the environment into deadlock, as follows:

Algorithm 6 Deadlock tests from Algorithm 1 in [14]
20: if ∃σ ∈ CTR SET (resp. ∃σ ∈ AUT SET ), σ leads to

deadlock) then
21: s (resp. e) is unrealizable as it can be forced into a safety

violation

If the (unrealizable) system cannot be forced into a safety
violation, there exists and environment strategy to “lock”
the system out of some liveness; the faulty liveness can be
identified as in the unsatisfiable case, requiring only some (and
not every) counterstrategy to be winning, as in lines 29-30; the
symmetric test for environment livelock is in lines 37-38.

Example 2. Consider again the hide-and-seek specification
in Listing 1. As mentioned in Section III, this specification
fails to produce a controller, and it is difficult to determine
where the problem is without the aid of the presented analysis.
The proposed tests determine that the system is unrealizable
because the environment can force a safety violation. This al-
lows the user to focus their attention on the relevant sentences
(highlighted as in Fig. 4).

D. Guarantees:

The algorithm presented above is complete for system
unsynthesizability, in the sense that every incidence of system
unsatisfiability or unrealizability falls into one of the handled
cases. Note that the algorithm provides information about both
system and environment components. By notifying the user
if the environment is unsatisfiable or unrealizable, they are
alerted to the fact that the behavior generated may not be
as intended, prior to execution. However, there are cases of
environment unsatisfiability or unrealizability that may not be
identified by the above tests. When the environment is unreal-
izable because of livelock, but the system itself is deadlocked,
the system has no infinite strategies, and therefore cannot cause
environment livelock. Additionally, if the system is realizable
independent of the environment, the tests in Algorithm 5

will not reveal any information about the environment, since
synthesis will never fail. However in this case, following the
system strategy construction in [8], the system will achieve
the desired behavior rather than prevent the environment from
fulfilling its goals, so the environment unrealizability has no
consequences for the robot’s behavior. All other cases of
environment unrealizability are captured by the above tests.

VI. INTERACTIVE EXPLORATION OF UNREALIZABLE
SPECIFICATIONS

The algorithm described in the previous section enables
highlighting of sentences of the specification that contribute
to the unsynthesizability. However, so far the user is not
presented with any evidence to show that the specification
cannot be implemented. In the case of deadlock, it may
be possible to present the user with a set of finite move
sequences leading to a safety violation. However, in the
case of livelock, possibly exhaustive set of move sequences
sequences of moves are needed to demonstrate livelock. This
problem is addressed in this work via an interactive game. The
counterstrategy synthesis algorithm introduced in [11] is used
to extract a strategy for the environment, and find sequences
of environment actions such that there is no robot response
fulfilling the specification. The user interacts with this strategy
by selecting the robot actions and movement in every time step
in response to the sensor inputs provided by LTLMoP. The
user can change the state of robot actuators by clicking toggle
buttons, and select a region to move to by clicking on a map.
The available choices are automatically constrained according
to the system safety conditions: forbidden regions are blacked
out on the map, and illegal action choices raise an error, as
shown in Fig. 5(d).

Example 3. In the case of the unsynthesizable hide-and-seek
example from Listing 1, the cause of unrealizability is evident
at the very first state, as shown in Fig. 6. The environment has
set πfound target to true, and there are no safe robot actions
from the displayed state, as indicated by the error message on
the screen.

Example 4. Consider the specification in Listing 3, drawn
from the “fire-fighting” scenario introduced in [14]. The robot
task is to enter the house depicted in Fig. 1 from the deck
and visit the porch infinitely often. If it encounters a person,
it cannot move directly to the kitchen. Similarly, if it senses
fire, it cannot move to the living room. The radio is always
turned off, and the assumption on the environment is that a
person will never be sensed simultaneously with fire.

Listing 3 Example of unrealizable specification for counter-
strategy visualization.

1 Robot starts with false
2 Robot starts in deck
3 Visit porch
4 If you are sensing person then do not kitchen
5 If you are sensing fire then do not living
6 Always do not (fire and person)
7 Always do not radio



9

The environment can prevent the robot from satisfying its
goal (to visit the porch infinitely often) by alternately enabling
πfire and πperson, thereby trapping the robot in the deck and
bedroom, i.e. away from the porch. The first three steps of this
(infinite) counterstrategy are shown being played through in
the Counterstrategy Visualization Tool in Figure 5. In the tool,
regions that cannot be chosen due to the motion constraints
are black.

The first step is the setting of a valid initial condition from
which the environment can win: the robot is in the deck and all
other sensor and action propositions are set to false. Second,
the environment enables πperson so the robot cannot enter the
kitchen and is in the next step confined (by the adjacency graph
in Fig. 1(c)) to the deck and bedroom as depicted in Fig. 5(a).
The user responds by moving the robot to the bedroom, and so
the environment then switches to enabling πfire and disabling
πperson as required by line 6 (Fig. 5(b)); this prevents the
robot from entering the living room, and the user returns to
the deck. This move results in the original configuration, and
the environment again switches on πperson and turns off πfire,
as shown in Fig. 5(c); at this point it should be clear to the
user why the task is unrealizable – the environment can keep
it out of the porch.

VII. RELATED WORK

There are several frameworks that use temporal logics for
robot control, including those based on model checking [3],
[4], [5], [6] and synthesis [9], [10]. However, the problem of
explaining robot behaviors that cannot be achieved has only
recently been addressed [13], [14], [19]. This paper supersedes
the work described in [13], [14], and includes additional
original examples illustrating the full specification analysis
procedure. In addition, formal guarantees are discussed with
respect to the algorithm presented. The work in [19] addresses
the problem of revising LTL specifications that are not satisfied
on a given system. The author defines a partial order on LTL
formulas, and defines the notion of a valid relaxation for an
LTL specification, which informally corresponds to the set
of formulas larger than all the formulas in that specification.
They then present formula relaxation for unreachable states,
which is accomplished by recursively removing all positive
occurrences of unreachable propositions in a manner similar
to the fixpoint calculation described in Section V. On the other
hand, to revise specifications with logical inconsistencies, they
take the synchronous product of the system and environment
specifications and add in disallowed transitions as needed to
achieve the goal state. The work presented in this paper differs
in its objective, which is to provide feedback on existing
specifications, not rewrite them. The main advantage of the
approach in this paper over that in [19] is that the inconsis-
tencies are mapped directly to sentences in the specification
language. Moreover, the techniques applied in this paper deal
with reactive specifications.

While explaining unachievable robot behaviors is a rela-
tively new area of research in robotics, there has been prior
work on unsatisfiability and unrealizability of LTL in the for-
mal methods literature. Some approaches focus on analyzing

(a) Robot starts in the deck, environment’s first move
turns person on.

(b) User moves the robot to the
bedroom; environment turns off
person and turns on fire, prevent-
ing living.

(c) User moves the robot back to the
deck, environment turns off fire and
turns on person, and is back where
it started.

(d) An error message is displayed if the user tries to select
radio for the robot.

Fig. 5: Interactive Game for Unrealizable Specifications [14]

Fig. 6: Counterstrategy visualization for “hide-and-
seek” example. The circled message reads, “Check-
mate: no possible system moves”.
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unsatisfiable LTL formulas without considering unrealizabil-
ity, and exploiting existing tools like model checkers [20].
Others investigate notions of unsatisfiable core for an LTL
formula[21], and use techniques like Boolean enumeration
and temporal reasoning to search for these cores [22]. For
model-checking based unsatisfiability testing, [23] use formal
definitions of causality to explaining counterexamples pro-
vided by model-checkers; they detect a set of causes of failure
conjectured to be the union of the minimal unsatisfiable cores,
but more appropriate to understanding a counterexample.

Similarly, there has been work on checking that a satisfiable
LTL specification can be implemented (i.e., is realizable). On
the diagnostic front, the authors of [24] propose definitions for
“helpful” assumptions and guarantees, and compute minimal
explanations of unrealizability (i.e., ”unrealizable cores”) by
iteratively expelling unhelpful constraints. The corresponding
problem of correcting a general unrealizable LTL specification
has been approached in [25], by computing the minimal addi-
tional environment assumptions that would make an unrealiz-
able specification realizable, and implemented using efficient
analysis of turn-based probabilistic games.

The research presented in this paper is the first work on
analysing high-level specifications in the robotics domain. The
techniques applied are most closely related to [11], whose
authors implement a set of sophisticated specification analyses
in an interactive tool, RATSY [26], which demonstrates un-
realizability in hardware design specifications. The interactive
game presented in this paper is better adapted to the robot
domain, as described in Section VI.

VIII. CONCLUSIONS AND FUTURE WORK

This paper addresses the problem of explaining the cause
of failure in high-level autonomous robot specifications for
which there either does not exist an implementing controller,
or the implementation is trivial. An algorithm is presented for
systematically analyzing robot behavior specifications, exploit-
ing the structure of the specification to narrow down possible
reasons for failure to create a robot controller. The approach
is implemented as part of the open source LTLMoP toolkit.
The synthesis process is enclosed in a layer of reasoning that
identifies the cause of failure, enabling the user to target their
attention to the relevant portions of the specification. The
user is also allowed to explore the cause of failure in an
unsynthesizable specification by means of an interactive game.

Future work will leverage existing techniques to further
isolate the source of failure and provide the user with com-
prehensive feedback, including modifications to the input that
would allow synthesis. If the presented algorithm determines
that the system or environment is unsatisfiable, further analysis
can narrow down the cause of this unsatisfiability by finding
an unsatisfiable core. Similarly, if the system is unrealizable,
analysis can proceed by computing the unrealizable core, or
adding additional environmental assumptions [25], [19].

For instance, the specification in Example 3 can be made re-
alizable by adding assumptions on the environment to prevent
it from setting πfound target to true and πwhistle to false when
πcounting is true. Additional assumptions, shown in Listing 4,

Listing 4 Additional environment assumptions that make the
specification in Listing 1 synthesizable

If you were activating counting then do not
found_target and not been_found

If you were activating seeking then not been_found
and do not whistle

If you were activating hiding then do not whistle
and not found_target

are also needed to prevent the environment from causing safety
violations when πhiding and πseeking are true. A key direction
of future research is the development of efficient techniques
for computing unsatisfiable and unrealizable cores and added
assumptions for specifications in the robotics domain.
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