
Synthesis for Multi-Robot Controllers with Interleaved Motion

Vasumathi Raman1 and Hadas Kress-Gazit2

Abstract— This paper addresses the problem of designing
control schemes for teams of robots engaged in complex high-
level tasks. It presents a method for automatically creating
hybrid controllers that ensure that a team of possibly het-
erogeneous robots satisfies a user-defined high-level task. The
proposed approach relaxes constraints on the simultaneous and
interleaved motion of the robots, while maintaining constraints
on their relative location to guarantee collision-avoidance and
prevent deadlock. The approach is demonstrated in the context
of a team of robots engaged in sorting objects for recycling.

I. INTRODUCTION

Constructing controllers for high-level robot behaviors is
an active field of research in robotics. The use of formal
methods has seen much success in the construction of con-
trollers for autonomous behaviors such as search and rescue
missions and autonomous vehicle control [4], [8], [10], [12],
[16]. With constantly improving technology for multi-robot
applications such as robot swarms and self-driving cars, there
is a growing need for system designers to be able to easily
create such controllers for teams of robots.

Unlike approaches such as [9], [10] which consider multi-
robot control for path planning problems, this work is con-
cerned with reactive behaviors, which may require the system
to behave differently based on gathered sensory information.
Applications that involve such behaviors include search-and-
rescue and autonomous driving. Non-reactive tasks, which
include robots driving in formation to pre-specified goal
positions, allow for hard-coded high-level behaviors with
low-level tuning during execution. On the other hand, reac-
tive behaviors require planning for every eventuality, adding
complexity to an already nontrivial problem, and hand-coded
controllers are infeasible for even modest problem sizes. The
authors in [5] describe the automatic synthesis of control and
communication strategies for a robotic team, from reactive
task specifications of servicing requests in an environment.
In contrast with the decentralized controllers presented in
that work, this paper focuses on centralized controllers for a
larger class of multi-robot tasks. Moreover, the authors in [5]
assume that the location of the requests in the environment
are known; in contrast, this work assumes an adversarial
environment. Closest to the setting in this work, the authors

Vasumathi Raman is supported by TerraSwarm, one of six centers of
STARnet, a Semiconductor Research Corporation program sponsored by
MARCO and DARPA. Hadas Kress-Gazit is supported by NSF CAREER
CNS-0953365 and NSF ExCAPE.

1V. Raman is with the Department of Computing and Mathematical
Sciences, California Institute of Technology, Pasadena, CA 91125, USA
vasu@caltech.edu.

2H. Kress-Gazit is with the Sibley School of Mechanical and
Aerospace Engineering, Cornell University, Ithaca, NY 14853, USA
hadaskg@cornell.edu

in [13] design centralized controllers that satisfy reactive,
temporal logic specifications, by composing controllers using
navigation functions. However, the “secondary controllers”
(i.e. controllers other than motion) used in the task definition
are required to be continuous; the work presented in this
paper does not restrict the non-motion controllers in this way.

In order to produce provably correct high-level plans
from reactive specifications, techniques based on temporal
logic synthesis have been applied to automatically synthesize
correct-by-construction controllers from formal task specifi-
cations [12], [16]. These approaches operate on a discrete
abstraction of the robot workspace, and a formal specification
of the environment assumptions and desired robot behavior.
The result is an automaton fulfilling the specification on this
abstraction, if one exists. This automaton is in turn used to
construct a hybrid controller that calls low-level continuous
controllers to execute each discrete transition.

The challenge of constructing these continuous controllers
for multi-robot systems was studied by [11]. The authors
provided a technique for constructing atomic controllers
that guarantee collision-avoidance and deadlock prevention
for teams of robots. This work combined the production
of high-level control in [12] with the low-level controller
synthesis described in [2]. The atomic controllers described
guide multiple robots to a goal set while avoiding collisions
with obstacles and other robots, and can be reused to
accommodate many different high-level tasks in the same
workspace. In contrast with prior work, which achieved
collision avoidance and deadlock prevention by imposing
explicit user-defined constraints, the approach in [11] allows
these constraints to be automatically generated during the
construction of multi-robot atomic controllers, and admits
a wider range of constraints, including minimum pairwise
distances between robots.

Due to the nature of the multi-robot atomic controllers
described in [11], the automaton representing the high-level
plan was restricted to transitions in which only one robot
moves at a time. This constraint is not only unnecessary for
most tasks, but sometimes excessively restrictive, as demon-
strated in Section IV. A key insight for overcoming this
restriction is that, since motion is non-instantaneous, it can
be abstracted to separate initiation and completion events.
While several robot motion controllers may be initiated at
once, the atomic controllers generated ensure that only one
of them will complete over a single transition. This idea was
first explored in the context of timing semantics for single-
robot controllers with low-level actions of arbitrary relative
execution durations [15]; its application to the multi-robot
domain is described formally in this paper.

The rest of the paper is structured as follows. Section II
defines the problem. Section III describes the construction of
a multi-robot hybrid controller that provably accomplishes a
high-level task. Section IV presents simulations, and shows
how the approach differs from previous work. The paper
concludes with a discussion in Section V.

II. PROBLEM FORMULATION

This work considers a team of robots A = {ai | i ∈
{1, ...,n}} moving in a polygonal workspace W ⊂Rdi . Robot
ai has configuration xi ∈ Xi ⊂ Rdi , and dynamics ẋi = ui
for ui ∈ Ui. The robots have minimum pairwise proximity
constraints to ensure collision-avoidance.

Each robot ai has a set of sensors Sen = {si j | i =
1, ...,n; j = 1, ...,mi} that represent high-level information
about the environment (i.e. discrete events that are not
controlled by the robot, but relevant to the task at hand). This
includes, for example, whether one of the robots is sensing
a fire. Robots may also have a set of actions, Act = {actik |
i = 1, ...,n;k = 1, ..., li}, which correspond to discrete actions
like picking up objects or transmitting messages. For this
work, we assume that such actions do no have any timing
constraints (i.e. they can be treated as instantaneous); the
approach generalizes to actions with timing constraints.

Let si j(t) denote the value of sensor variable si j at time
t, and actik(t) denote the activation of actuator acti j at time
t. Let Sent = {si j(t) | si j ∈ Sen} denote the sensor values at
time step t. A strategy Π for the robot system is a function
such that Π(Sent) = (u,Actt), where u = (u1,u2, ...,un) is a
control vector and Actt = {actik(t) | actik ∈ Act} gives values
to the robot actions. Let SenΠ

∞ = {Sen0,Sen1,Sen2, ...}, xΠ
∞ =

{x0,x1,x2, ...}, and ActΠ
∞ = {Act0,Act1,Act2, ...} denote the

infinite sequences of sensor inputs, robot configurations and
actions generated by following Π.

Finally, let ϕ be a high-level task specification provided
in some formal problem description language. This specifi-
cation describes both the desired behavior of the robots, and
assumptions on the environment.

Problem 1 Consider a team of robots A with the above
dynamics and proximity constraints, moving on Rd where
d = ∑

n
i=1 di, with sensors Sen, actions Act, and high-level

specification ϕ . For any possible initial state {x0,Sen0,Act0}
such that {x0,Sen0,Act0} |=ϕ , find a strategy Π, if one exists,
such that:
• ẋi(t) = ui(t)
• if SenΠ

∞ |= ϕ (i.e. the sensors satisfy the assumptions),
then (xΠ

∞ ,ActΠ
∞) |= ϕ (the robots fulfill the task)

III. CONTROLLER SYNTHESIS

This section presents the method used to construct a
hybrid controller guaranteed to produce the specified multi-
robot high-level behavior. Applying formal methods tools to
the construction of provably correct multi-robot controllers
involves (a) a discrete abstraction of the problem, in which
the continuous reactive behavior of the multi-robot system is
described in terms of a finite set of states, and (b) a temporal

logic formalism for the specification, which in this work is
Linear Temporal Logic (LTL) [6]. These components are now
described, using an example to demonstrate the stages of
synthesis for a simple high-level multi-robot recycling task.

A. Linear Temporal Logic (LTL)

Syntax: Let AP be a set of atomic propositions. LTL
formulas are defined by the recursive grammar:

ϕ ::= π | ¬ϕ | ϕ ∨ϕ | ©ϕ | ϕ U ϕ,

where π ∈ AP, ¬ is negation, ∨ is disjunction, © is “next”,
and U is a strong “until”. Conjunction (∧), implication (⇒),
equivalence (⇔), “eventually” (�) and “always” (�) are
derived from these operators.

Semantics: The truth of an LTL formula is evaluated over
infinite sequences of states, corresponding to executions of
a finite state machine representing the system. A state cor-
responds to an assignment of truth values to all propositions
π ∈ AP. Given an infinite sequence of states σ , the statement
σ |= ϕ denotes that σ satisfies formula ϕ . The statement
σ |= ∆ϕ for ∆ = (©,�, �,� �) denotes that ϕ is true at
the second position, at every position, at some position, and
infinitely often in σ , respectively. Let A be a finite state
machine whose states are labeled with truth assignments on
AP. Then A is said to satisfy ϕ if, for every execution σ of
A, σ |=ϕ . The reader is referred to [6] for a formal definition
of the semantics.

B. Discrete Abstraction

The relevant features of the continuous robot control prob-
lem are abstracted using a finite set of Boolean propositions.
To capture the motion of the robots using the discrete
formalism of LTL, the workspace is partitioned into regions,
and Boolean variables introduced to indicate the location of
each robot. To account for the non-instantaneous execution
of continuous motion controllers, each motion is viewed as
the activation of the corresponding low level controller, and a
new sensor proposition is introduced in the discrete model to
indicate whether the controller has completed execution. That
is, the robot is able to sense when a motion controller has
completed its action (i.e.,when it has crossed the boundary
into a neighboring region).

The discrete abstraction consists of:
• πsi j

for every sensor input si j (e.g., π1person is true if and
only if robot 1 is sensing a person)

• πactik
for every robot action actik (e.g., π2camera is true if

and only if the robot’s camera is on)
• πir for the initiation of motion by robot i towards region

r (e.g., π1office is true if and only if robot 1 is trying
to move to the office). These propositions represent
controller activation events.

• πc
ir for the completion of robot i’s motion to region r

(e.g., πc
1office

is true if and only if robot 1 has arrived in
the office). These propositions represent sensed events.

The set of sensor propositions is denoted by X , and the set
of action and location (i.e., robot-controlled) propositions by

Y . Thus, for every sensor input si j , robot action actik , robot
index i and region r, πc

ir ,πsi j
∈ X and πir ,πactik

∈ Y . The
value of each π ∈ X ∪Y is the abstracted binary state of a
low-level black box component, such as a thresholded sensor
value or robot location with respect to some workspace
partition.

Example 1 Consider the four-room workspace depicted in
Fig. 1(a), where the rooms are labeled r1−r4. There are two
robots, indicated by circles: robot 1 starts in r1 and robot 2
starts in r4. Each robot has two sensors, one for glass and
one for metal. Robot 1’s specification is as follows. If it sees
glass, it takes it to r4, if it sees metal, it carries it to r2. After
it has done so, it proceeds to r4 and stays there. Robot 2’s
specification is to go to r1 and stay there. Here,

1) X = {π1glass ,π2glass ,π1metal ,π2metal}∪{πc
ir | i ∈ {1,2},r ∈

{1,2,3,4}}
2) Y = {π1carrying glass ,π2carrying glass ,π1carrying metal ,π2carrying metal}
∪{πir | i ∈ {1,2},r ∈ {1,2,3,4}}

C. Task Specification
Given a discrete abstraction, a high-level task is specified

using an LTL formula over X ∪Y . The task specification
governs which actions can be activated by the robots, and
assumptions on how the action-completion and environment
sensors behave. There are two types of properties allowed
in a specification: safety properties, which guarantee that
“something bad never happens,” and liveness conditions,
which state that “something good (always eventually) hap-
pens”.

This work considers tasks that can be specified using
formulas of the form ϕe ⇒ ϕs, where ϕs represents the
desired multi-robot system behavior, and ϕe encodes as-
sumptions on the environment. The environment in this work
includes events external to the robots as well as the system’s
internal state, as perceived by the robots’ sensors. ϕe and ϕs
each contain initial conditions (ϕ i

e,ϕ
i
s), safety requirements

(ϕ t
e,ϕ

t
s) and liveness conditions (ϕg

e ,ϕ
g
s) for the environment

and system, respectively. The following is an excerpt of the
user-defined LTL specification for the task in Example 1:

(ϕc
1r1
∧¬π1carrying metal ∧¬π1carrying glass) #Initial

(Robot 1 starts in region r1, carrying nothing.)
∧ (ϕc

2r4
∧¬π2carrying metal ∧¬π2carrying glass) #Initial

(Robot 2 starts in region r4, carrying nothing.)
∧ �(©πiglass ⇒©πicarrying glass) #Safety

(Robot i activates carrying glass if sensing glass)
∧ �(©πimetal ⇒©πicarrying metal) #Safety

(Robot i activates carrying metal if sensing metal)
∧ � �(π1carrying glass →©π1r4

) #Liveness
(If Robot 1 is carrying glass, it should visit r4)

∧ � �(π1carrying metal →©π1r2
) #Liveness

(If Robot 1 is carrying metal, it should visit r2)
∧ � �(π1r4

) #Liveness
(Robot 1 should go to r4)

∧ � �(π2r1
) #Liveness

(Robot 2 should go to r1)

In addition to the user-defined specification, there are
several constraints automatically generated depending on the
availability of atomic motion controllers. These components
of the specification are now described in detail.

1) Multi-Robot Motion Constraints: The robot’s motion
in the workspace is governed by the availability of controllers
to drive it between adjacent regions, based on the location
of the other robots and obstacles in the workspace. The
atomic controllers used to drive the team of robots from one
configuration to another can be constructed using a method
such as the one presented in [11]. The construction of these
atomic controllers produces an adjacency relation and safety
conditions based on the workspace and the specified proxim-
ity constraints, which are automatically encoded as a logic
formula ϕmotion, and included as part of the specification.

In the construction of atomic controllers in [11], the
configuration space is composed of polytopes in which the
agents cannot collide, and each polytope is associated with a
region combination based on where each robot is. The atomic
controllers are generated by solving for linear feedback
controllers that drive the team of robots from any state in one
polytope to the exit facet shared with each adjacent polytope
(i.e. each polytope that shares a matching facet). This results
in paths between region combinations. Since the atomic
controllers direct states to a facet, at most one robot will cross
a room threshold at any time. In the approach presented in
[11], this required restricting the possible motions of the team
of robots in the specification (and thereby in the synthesized
automaton), to those in which at most one robot changes
rooms at a time. However, using the approach in this paper,
the automaton no longer has to be restricted in this manner,
and multiple robots may initiate motion simultaneously.

The initiation and completion of the linear feedback con-
trollers for each robot are modeled as separate events, and
therefore constraints on which robots can move (i.e. only
one robot can move at a time) are replaced by assumptions
on how these controllers can complete (at most one motion
controller will complete at a time). This allows the acti-
vation of multiple robot motion controllers when possible,
such as when the robots are operating in distant parts of
the workspace. On the polytope graph, this corresponds to
allowing paths between all polytopes in which each robot
is in either the beginning or end configuration. Note that
a single atomic controller corresponds to the activation or
deactivation of several variables in the discrete abstraction
(one for each robot). So an atomic controller that drives
robot 1 from r1 to r2 and robot 2 from r4 to r3 will give
rise to constraints on sensors corresponding to πc

1r1
and πc

2r4
and actions corresponding to π1r2

and π2r3
.

The allowed motion of the robots depends on the sensed
location and the availability of atomic controllers to drive the
robots from one location to another. Since each robot can
be in exactly one location at any given time, the formulas
ϕc

ir = πc
ir ∧

∧
r′ 6=r¬πc

i′r
and ϕir = πir ∧

∧
r′ 6=r¬πi′r are added to

the specification to represent robot i being in and activating
a controller to move to region r, respectively. Assume that
for the above example, given the proximity constraints on

(a) Workspace for Example 1 (b) Workspace for Example 2

Fig. 1

Fig. 2: Excerpt of synthesized automaton for Example 1

the robots and the availability of atomic controllers, they
cannot be in the same region at the same time, but all other
possible transitions are based on the adjacency of rooms.
In other words, given initial and final configurations of the
team of robots, there exists an atomic controller to drive
from the initial configuration to the final configuration if
and only if each robot is moving between adjacent rooms
or staying in place, and the robots are not in the same room
as each other in either configuration. Then the multi-robot
motion polytope graph generated during the construction of
the atomic controllers results in the following (automatically
added) safety conditions in the specification for Example 1:

ϕmotion =
adjacency for robot i ∈ {1,2}
�(©ϕc

ir1
⇒©ϕir1

∨©ϕir2
∨©ϕir3

)

∧�(©ϕc
ir2
⇒©ϕir1

∨©ϕir2
∨©ϕir4

)

∧�(©ϕc
ir3
⇒©ϕir1

∨©ϕir3
∨©ϕir3

)

∧�(©ϕc
ir4
⇒©ϕir2

∨©ϕir3
∨©ϕir4

)

constraints forbidding robot co-location
∧�

∨4
i=1(ϕ

c
1ri
∧
∨

j 6=i ϕc
2r j

)

Formula ϕmotion is added as a sub formula of ϕ t
s , i.e. the

system safety condition.
2) Sensor Assumptions: In addition, sensor assumptions

are required to define the effects of the robot activating its
various motion controllers:

ϕcompletion =
∧
i,r,r′

�(ϕc
ir ∧ϕir′ ⇒ (©ϕ

c
ir ∨©ϕ

c
ir′
))

This says that if robot i is in region r (i.e. ϕc
ir is true) and

is activating the controller to move to region r′ (i.e. ϕir′ is
true), then in the next time step it will either still be in r (ϕc

ir
will still true), or will have arrived at r′ (ϕc

ir′
will be true).

Formula ϕcompletion is added as a sub formula of ϕ t
e, i.e. the

environment safety assumption.

3) Fairness conditions: In addition to the above safety
conditions, further constraints on the environment are re-
quired to ensure that every motion eventually completes,
i.e. that the robots’ environment is in some sense “fair”. In
this work, we make the environment assumption that every
controller activation eventually results in completion, i.e. the
fairness condition (added as a sub formula of ϕ

g
e):

ϕ f air =
∧
i,r

� �(πir ⇒©π
c
ir)

This corresponds to the assumption that every atomic motion
controller will eventually complete execution. In other words,
if robot i is driving to region r, it will eventually cross the
threshold into r.

Given a task specification ϕ = (ϕe⇒ ϕs), the LTL spec-
ification used to synthesize a controller (after adding multi-
robot motion constraints, sensor assumptions and fairness
conditions) is now :

ϕnew = ϕe∧ϕcompletion∧ϕ f air⇒ ϕs∧ϕmotion

Note that the approach presented in this work can also
be used with single-robot feedback controllers such as those
described in [3], [7], but the safety restrictions on the relative
locations of the robots would have to be explicitly encoded
in the user-defined specification.

D. Synthesis

An LTL formula ϕ is realizable if there exists a finite
state strategy that, for every finite sequence of truth assign-
ments to the sensor propositions, provides an assignment
to the robot propositions such that every infinite sequence
of truth assignments generated in this manner satisfies ϕ .
The synthesis problem is to find a deterministic finite state
automaton (if one exists) that encodes this strategy, i.e. whose
executions correspond to sequences of truth assignments that
satisfy ϕ . Although synthesizing a deterministic automaton
that realizes an arbitrary LTL formula is doubly exponential
in the size of the formula, when restricted to formulas of the
form ϕe⇒ ϕs described above, the algorithm introduced in
[14] permits synthesis in time polynomial in the size of the
state space. This synthesis algorithm was extended in [15] to
efficiently accommodate a wider class of specifications, and
this paper uses the synthesis algorithm from that work.

When a specification is realizable, synthesis yields an
automaton that implements the specification in a discrete
abstraction of the problem. Fig. 2 depicts an excerpt of
the automaton synthesized for Example 1 using the GR(1)
synthesis algorithm in [15], as implemented in the SLUGS
synthesis tool1; the full automaton has 204 states. Each
state of the automaton is labeled with the truth assignment
to location and action propositions in that state, and each
transition is labeled with the truth assignment to sensor
propositions required for that transition to be enabled. In-
coming transitions therefore also determine the truth value
of the sensor propositions for each state. In state q0, robot 1

1available at https://github.com/ltlmop/slugs

is in r3 (as indicated by incoming edge label c 13), activating
the controller for moving to r1, and is carrying metal. Robot
2 is in r2, moving towards r4. States q1, q2 and q3 are the
result of various combinations of motion-completion events,
e.g. in q3, both robot motions have completed simultaneously
(we do not exclude this possibility here, although the atomic
controllers in [11] preclude it).

E. Continuous Execution

If an automaton is obtained, a controller that implements
the corresponding continuous behavior is constructed by
viewing the automaton as a hybrid controller, with a transi-
tion between two states achieved by the activation of one or
more low-level continuous controllers corresponding to each
proposition. The atomic controllers used must satisfy the
bisimulation property [1], which ensures that every change
in the discrete robot model can be implemented in the
continuous domain. Since the task specification included
a discrete transition graph representing the availability of
these atomic controllers, every change in the discrete multi-
robot model can by design be implemented in the continuous
domain (i.e., the atomic motion controllers constructed as in
[11] are guaranteed to drive each robot from one region to
another regardless of the initial state within the region).

Given an automaton synthesized using the above approach,
all relevant controllers are invoked simultaneously to bring
about an instantaneous change in state. A given discrete
transition (q,q′) is executed by simultaneously invoking
the controllers corresponding to every action or location
proposition that changes value from q to q′. Transitions in the
automaton are instantaneous, as they correspond to activation
or completion of controllers. Recall that in this work, the
non-motion controllers are assumed to have instantaneous
execution, and so activation and completion are captured by
a single event. The motion controllers may however take
several discrete transitions to complete execution; this allows
other events to occur while a robot is completing a motion.

IV. SIMULATIONS

In this section, we show the results of simulating the
controller constructed for Example 1, and discuss differences
of the proposed approach from that in [11]. Fig. 3 shows
a MATLAB simulation of the automaton synthesized for
Example 1; a video accompanies this paper. The naive
controllers used for simulating motion for each robot set the
robot’s velocity towards the centroid of the next region – in
future work, these will be replaced in physical experiments
with atomic controllers such as those constructed in [2].

In the simulation, the robots 1 and 2 are represented by a
red square and green triangle respectively. Larger markers on
the trajectories indicate points where the robots change state,
either by moving to a new region, or as the result of a sensor
event. Fig 3(a) shows the robot initial condition, with robot
1 in r1 and robot 2 in r4. In Fig 3(b), the robots have both
started moving towards their goals r4 and r1 respectively:
robot 1 moves through r3 and robot 2 moves through r2.
In Fig 3(c), robot senses glass while it is in r3, as marked.

In Fig 3(d), robot 1 enters r4 after sensing glass, and then
senses metal. In Fig 3(e), robot 1 arrives in r2 after sensing
metal (note that robot 2 has moved to r4 to avoid being in
the same room as robot 1). In Fig 3(f) the robots have visited
their respective goals (robot 1 is in r4, robot 2 is in r1).

Observe that the robot trajectories never collide, and the
robots are never in the same region at the same time, since
this was the constraint added based on the available low-
level atomic controllers, and enforced in the synthesized
automaton. Additionally, the robots move simultaneously
when they can do so without arriving in the same room (e.g.
in Fig 3(b)), thus allowing progress when possible while still
avoiding collisions.

(a) Initially robot 1 is in r1, robot 2
is in r4

(b) Robots 1 and 2 start moving to-
wards r4 and r1 via r3 and r2.

(c) Robot 1 senses glass while in r3 (d) Robot 1 senses metal as it enters
r4 after sensing glass

(e) Robot 1 arrives in r2 after sensing
metal. Robot 2 moves aside to r4.

(f) Robots continue to their destina-
tions (robot 1 in r4, robot 2 in r1)

Fig. 3: Simulation of Example 1

A. Comparison with previous approach

By allowing more than one robot to make progress at
a time, the proposed approach succeeds in some cases
where requiring that at most one robot move at a time is
too conservative. The following example demonstrates one
such case, where restricting simultaneous motion makes the
specification unsynthesizable, when in fact a controller exists
to achieve the desired behavior.

Example 2 Consider the workspace depicted in Fig 1(b).
Robot 1 starts in r1. When it sees glass, it should immediately

r_16
r_21

c_21
c_16

r_16
r_21 c_21

c_16

c_22
c_16

r_16
r_21

c_21
c_16c_21

c_15

r_14
r_23

c_26
c_11

r_15
r_22

c_23
c_14

r_15
r_23c_26

c_14

r_14
r_23

c_23
c_11

r_11
r_26

c_26
c_11

c_23
c_14

r_16
r_21

c_22
c_15

r_16
r_22

c_23
c_15

r_15
r_22

c_22
c_14

c_23
c_14

c_26
c_14

r_15
r_23

c_26
c_15

c_23
c_15

c_26
c_15

c_23
c_15

c_23
c_14

c_23
c_11

c_21
c_16

c_22
c_16

c_21
c_15

c_22
c_15

c_22
c_16

c_22
c_15

c_23
c_15

r_16
r_22c_23

c_16
c_22
c_16

c_23
c_16

c_22
c_15c_22

c_14

Fig. 4: Synthesized automaton for Example 2

move to r2, and return to r1 immediately when it stops
sensing glass. Robot 2 starts in r6, and its goal is to visit r4.

It should be possible to synthesize a controller for the
specification in 2, because the two robots operate in disjoint
parts of the workspace – robot 1 only needs to move between
regions r1 and r2, and robot 2 only needs to move between
r4,r5 and r6. However, using the approach in [11], each
robot’s motion is abstracted to a single discrete event, and
only one robot is allowed to move at a time because of
the nature of the constructed atomic controllers. Consider
what happens if the glass sensor is toggled on and off at
each successive time step. In order to satisfy the safety
specification, robot 1 has to move between rooms r1 and r2
infinitely. However, robot 2 has to stay in place in r6 while
robot 1 is moving, and can therefore never visit r4.

On the other hand, if we model motion activation and
completion as separate events, the restriction changes from
requiring only one robot to move at a time, to an assumption
stating that no two robots will complete execution of a
motion controller at the exact same time. Thus, with the
approach presented in this paper, robot 2 can initiate motion
towards r5 and eventually r4, even as robot 1 continues to
move between r1 and r2. Moreover, while the two robots’
motion controllers may never complete at the exact same
time, they will both eventually complete (according to the
fairness assumption made while synthesizing the controller).
Fig 4 depicts the automaton synthesized for this specification.

B. Added complexity

With the above discrete abstraction of the multi-robot
mission planning problem, one environment proposition must
be added for each robot motion (corresponding to the sensor
for motion completion). The strategy synthesis scales ex-
ponentially in the number of sensor propositions2, i.e. by
a factor of 2|Y|. Thus, the added richness of the discrete
abstraction, which allows synthesis for a wider range of task
specifications, comes at the expense of an increased state
space, and therefore a higher computational cost of synthesis;
the synthesis algorithm itself is still polynomial in the size
of the state space and therefore tractable in practice.

V. CONCLUSIONS

This paper presented a method for constructing provably
correct controllers for teams of robots performing complex

2This can be reduced in practice by encoding mutually exclusive actions
and sensors using bit vectors.

high-level tasks. The approach used a discrete abstraction to
synthesize an automaton satisfying a task specification, and
a set of atomic controllers for continuously implementing
every discrete transition in the synthesized automaton. It
relaxed assumptions on the simultaneity and interleaving
of motion of the individual robots, while preserving safety
of the resulting controllers. Allowing multiple robots to
progress simultaneously overcomes inefficiencies resulting
from robots awaiting their turn to move, and enables provably
correct controller synthesis in cases that were previously
unsynthesizable. The method was demonstrated in simulation
through the example of a team of robots engaged in a recy-
cling task, but is general, and lends itself to any multi-agent
domain for which the relevant low-level atomic controllers
can be created. Moreover, once the atomic controllers have
been created for a specific domain, they can be reused for a
wide variety of tasks by easily modifying the specification.
Experimental evaluation with atomic controllers constructed
using a variety of approaches is a topic of future work.

REFERENCES

[1] Rajeev Alur, Thomas A. Henzinger, Gerardo Lafferriere, and George J.
Pappas. Discrete abstractions of hybrid systems. Proceedings of the
IEEE, 88(7):971–984, 2000.

[2] Nora Ayanian and Vijay Kumar. Decentralized feedback controllers for
multi-agent teams in environments with obstacles. IEEE Transactions
on Robotics, 26(5):878 – 887, October 2010.

[3] Calin Belta, Volkan Isler, and George J. Pappas. Discrete abstractions
for robot motion planning and control in polygonal environments.
IEEE Transactions on Robotics, 21(5):864–874, 2005.

[4] Amit Bhatia, Lydia E. Kavraki, and Moshe. Y. Vardi. Sampling-based
motion planning with temporal goals. In ICRA, pages 2689–2696,
2010.

[5] Yushan Chen, Xu Chu Ding, Alin Stefanescu, and Calin Belta. Formal
approach to the deployment of distributed robotic teams. IEEE
Transactions on Robotics, 28(1):158–171, 2012.

[6] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model
Checking. MIT Press, 1999.

[7] David C. Conner, Alfred Rizzi, and Howie Choset. Composition of
local potential functions for global robot control and navigation. In
IROS, volume 4. IEEE, October 2003.

[8] Sertac Karaman and Emilio Frazzoli. Sampling-based motion planning
with deterministic µ-calculus specifications. In CDC, 2009.

[9] Marius Kloetzer and Calin Belta. Temporal logic planning and control
of robotic swarms by hierarchical abstractions. IEEE Transactions on
Robotics, 23(2):320–330, 2007.

[10] Marius Kloetzer. and Calin Belta. Automatic deployment of distributed
teams of robots from temporal logic motion specifications. IEEE
Transactions on Robotics, 26(1):48–61, 2010.

[11] Hadas Kress-Gazit, Nora Ayanian, George J. Pappas, and Vijay Kumar.
Recycling controllers. In CASE, pages 772–777, 2008.

[12] Hadas Kress-Gazit, Georgios E. Fainekos, and George J. Pappas.
Temporal-logic-based reactive mission and motion planning. IEEE
Transactions on Robotics, 25(6):1370–1381, 2009.

[13] Savvas G. Loizou and Kostas J. Kyriakopoulos. Automatic synthesis
of multiagent motion tasks based on ltl specifications. In CDC, pages
153–158, 2004.

[14] Nir Piterman, Amir Pnueli, and Yaniv Sa’ar. Synthesis of reactive(1)
designs. In VMCAI, pages 364–380. Springer, 2006.

[15] Vasumathi Raman, Nir Piterman, and Hadas Kress-Gazit. Provably
correct continuous control for high-level robot behaviors with actions
of arbitrary execution durations. In ICRA, pages 4075–4081, 2013.

[16] Tichakorn Wongpiromsarn, Ufuk Topcu, and Richard M. Murray.
Receding horizon control for temporal logic specifications. In HSCC,
pages 101–110, 2010.

