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Abstract— One of the main challenges in robotics is the gener-
ation of controllers for autonomous, high-level robot behaviors
comprising a non-trivial sequence of actions. Recently, formal
methods have emerged as a powerful tool for automatically
generating autonomous robot controllers that guarantee desired
behaviors expressed by a class of temporal logic specifica-
tions. However, when there is no controller that fulfills the
specification, these approaches do not provide the user with a
source of failure, making the troubleshooting of specifications
an unstructured and time-consuming process. In this paper,
we describe a procedure for analyzing an unsynthesizable
specification to identify causes of failure. We also provide an
interactive game for exploring possible causes of failure, in
which the user attempts to fulfill the robot specification against
an adversarial environment. Our approach is implemented
within the LTLMoP toolkit for robot mission planning.

I. INTRODUCTION

Our goal is to provide feedback on high-level autonomous
robot behaviors for which no implementing controller exists.
Such high-level behaviors comprise non-trivial sequences of
actions, including reacting to external events and repeated
goals. Examples include search and rescue missions and the
DARPA Urban Challenge [4]. A number of frameworks have
recently been proposed for the verifiable integration of high-
level planning with continuous control, to guarantee that the
implemented plans will produce the desired behavior. Most
rely on an abstraction of the underlying system as a discrete
transition system, and use model checking [8] to synthesize
control laws (e.g. [16], [2]) on this discrete model. The
desired properties are usually expressed using some flavor of
temporal logic, such as Linear Temporal Logic (LTL)[18].

Some recent work [14], [23] has applied efficient synthesis
techniques [17] to automatically generate provably correct,
closed loop, low-level robot controllers that satisfy high-
level reactive behaviors specified as LTL formulas. Speci-
fications describe the robot’s goals and assumptions on the
environment it operates in, using a discrete abstraction. The
hybrid robot controllers generated represent a rich set of
infinite behaviors, and are provably correct-by-construction:
the closed loop system they form is guaranteed to satisfy the
desired specification in any admissible environment (i.e. one
that satisfies the modeled assumptions).

In the above formal approaches, when a specification
is feasible, a controller is generated; however, when there
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exist admissible environments in which the robot fails to
achieve the desired behavior, controller synthesis fails – we
call such a specification unsynthesizable. An unsynthesizable
specification is unsatisfiable if the robot cannot achieve the
desired behavior no matter what happens in the environment,
and unrealizable if there exists at least one environment that
can thwart the robot. An example of unsatisfiability is a
disconnected workspace, where the robot goal is to patrol all
regions; on the other hand, if there is a door the environment
could close to disconnect an otherwise connected workspace,
the specification is unrealizable.

When the specification is unsynthesizable, synthesis-based
approaches fail to produce the desired behavior, but do not
typically provide the user with the exact source of failure.
Moreover, even when synthesis is possible, the generated
automaton (which fulfills the specification) may produce
undesirable or trivial behavior for reasons involving unsat-
isfiability or unrealizability of the environment assumptions.
This can make troubleshooting a specification an ad hoc and
unstructured process. This paper describes a procedure for
systematically analyzing an LTL specification to identify and
focus the user’s attention on relevant portions thereof.

II. RELATED WORK

There has been previous work on analyzing unsatisfiable
LTL formulas in the formal methods literature [21], [7],
[22], [1]. Similarly, there has been work on explaining why
satisfiable specifications cannot be implemented because of
properties of the environment (i.e., unrealizable specifica-
tions) [6], [5]. Our approach is most closely related to [11]
and the derived interactive tool RATSY [3], which demon-
strates unrealizability in hardware design specifications. We
use a similar counterstrategy generation approach to explain
unrealizable specifications in the robot control domain, by al-
lowing the specification designer to interact with a simulated
environment that demonstrates the problem. In addition, we
provide explicit feedback on specification components, by
highlighting flawed portions of the user-defined specification
(either desired system behavior or environment assumptions),
and identifying cases of unexpected and undesirable behavior
such as the trivial solutions mentioned earlier. The system
and environment components of the specification are con-
sidered separately, and checks performed on subcomponents
in addition to the entire specification.



(a) Real Workspace (b) Polygonal Decomposition, rotated
90◦clockwise. Thick lines are walls

(c) Adjacency Graph

Fig. 1: Workspace Abstraction and Representation

In the robotics domain, the problem of revising LTL speci-
fications that are not satisfied on a given system was recently
addressed in [9]. In contrast, the work presented in this
paper provides feedback on existing specifications, mapping
failures directly to sentences in the specification language.
The procedure described in this paper is implemented within
Linear Temporal Logic MissiOn Planning (LTLMoP)[10],
[20], an open source, modular, Python-based toolkit that
allows a user to input structured English specifications de-
scribing high-level robot behavior, and automatically gener-
ates and implements the relevant hybrid controllers using the
approach of [14].The most recent version of LTLMoP can
be downloaded online1. The LTLMoP implementation of the
analysis in this paper is described in [20]; this paper provides
the underlying technical details and illustrative examples.

III. BACKGROUND

In the tasks considered, the robot operates in a known
workspace and its behavior (motion and actions) depends on
information gathered at runtime from its sensors about events
in the environment. We first review some preliminaries, and
outline the robot controller synthesis with an example.

Example 1. The example we present is a “fire-fighting”
scenario from [10]. The robot task is to enter the house
depicted in Fig. 1 from the porch and patrol the rooms. If
it encounters a person in the house, the robot should stay in
the room with the person and radio for help. If it encounters
a potentially hazardous item, the robot should pick it up
and take it to the front porch. Furthermore, the robot should
continue to patrol the house indefinitely.

A. Linear Temporal Logic

Applying formal methods to continuous problems inherent
in robotics requires a discrete abstraction of the problem
to enable description with a formal language. We provide
details on the discrete abstraction used in this work in Section

1http://ltlmop.github.com

III-B. The formal language used for high-level specifications
in this work is Linear Temporal Logic (LTL) [18]:
Syntax: Let AP be a set of atomic propositions. Formulas
are constructed from π ∈ AP according to the grammar:

ϕ ::= π|¬ϕ|ϕ ∨ ϕ|©ϕ|ϕUϕ

where ¬ is negation, ∨ is disjunction, © is “next” , and U
is “until”. Boolean constants True and False are defined
as usual: True = π ∨ ¬π and False = ¬True. We derive
conjunction (∧), implication (⇒), equivalence (⇔), “eventu-
ally” ( �ϕ = TrueUϕ) and “always” (�ϕ = ¬ �¬ϕ).
Semantics: The truth of an LTL formula is evaluated over
executions of a finite state machine representing the system.
An execution is viewed as an infinite sequence of truth
assignments to π ∈ AP ; a formula is satisfiable if it holds for
all executions. Informally, the formula ©ϕ expresses that ϕ
is true in the next “step” or position in the sequence. The
(infinite) truth assignment sequence σ satisfies formula �ϕ
if ϕ is true in every position of the sequence, and satisfies
�ϕ if ϕ is true at some position of the sequence; σ hence

satisfies the formula � �ϕ if ϕ is true infinitely often. We
refer the reader to [8] for a formal definition of the semantics.

To allow users who may be unfamiliar with LTL to define
specifications, LTLMoP includes a parser that automatically
translates English sentences belonging to a defined grammar
[13] into LTL formulas. An excerpt of the user-defined
specification for the fire-fighting problem is shown in Listing
1, along with the corresponding LTL formulas for each line.
There are two types of properties allowed in a specification
– safety properties, which guarantee that “something bad
never happens”, and liveness conditions, which state that
“something good (eventually) happens”. These correspond
to LTL formulas with operators � and � respectively.

B. Workspace Abstraction

Fig. 1 shows the three stages of workspace abstraction
for the “fire-fighting” scenario, from the real environment
to a set of convex polygons, and then as a graph with
edges connecting adjacent regions. The continuous reactive
behavior of a robot is described in terms of a finite set
of propositions representing sensor inputs, robot actions
and locations. We denote the set of sensor propositions
(controlled by the environment) by X , and the set of action
and location (i.e., robot-controlled) propositions by Y . In
the fire-fighting scenario described above, X = {πperson,
πhazardous item}, Y = {πporch, πdeck, πbedroom, πdining ,
πliving, πkitchen, πradio, πpick up, πdrop, πcarrying item}.
Propositions πperson and πhazardous item are true when the
robot senses a person and a hazardous item respectively,
πradio is true when the robot radios for help, πpick up and
πdrop are true when the robot picks up and drops a hazardous
item respectively, and πcarrying item is true when the robot
is carrying a hazardous item.

The value of each proposition can be thought of as the
binary output of a low-level black box component (e.g.,
πperson could be set based on a threshold on the output of
a sensor, πbedroom is set based on a localization component,



Listing 1 Example of (an excerpt of) a structured English specification, with corresponding LTL translation

# Initial conditions Component of ϕe
i and ϕs

i

1 Env starts with false ¬πperson ∧ ¬πhazardous item

2 Robot starts in porch with false ϕporch ∧ ¬πpick up ∧ ¬πdrop ∧ ¬πcarrying item

# Assumptions about the environment Component of ϕe
t

3 If you were in porch then do not person �(ϕporch ⇒ ¬©πperson)
4 If you were in porch then do not hazardous item �(ϕporch → ¬©πhazardous item)

# Define robot safety including how to pick up Component of ϕs
t

5 Do pick up if and only if you are sensing hazardous item �(©πpick up ⇔ (©πhazardous item∧
and you are not activating carrying item ¬©πcarrying item))

6 If you did not activate carrying item then always not porch �(¬πcarrying item → ¬©ϕporch)
# Define when and how to radio Component of ϕs

t

7 Do radio if and only if you are sensing person �(©πradio ⇔©πperson)

8 If you are activating radio or you were activating radio then stay there �((©πradio ∨ πradio)→
∧
l

(ϕl ⇔©ϕl))

# Patrol goals Component of ϕs
g

9 If you are not activating carrying item and you are not � �((¬πcarrying item ∧ ¬πradio)→ ϕdining)
activating radio then visit dining... ...

etc). We define a formula ϕl = πl
∧

l′ 6=l ¬πl′ to indicate that
the robot is in location l and not in any other location (i.e.,
locations are mutually exclusive). As part of the specification,
we encode the possible motion of the robot in the workspace
based on the topological constraints of the workspace (i.e.,
which regions are adjacent, and can be moved between in a
single time step). Legal transitions between adjacent regions
are represented as edges between vertices in a graph as
shown in Fig. 1(c), with implicit self-loops, and then encoded
into an LTL formula over location propositions.

LTLMoP takes in a user-defined specification and de-
scription of the environment topology, and parses it into a
formula of the form ϕ = (ϕe ⇒ ϕs), where ϕe encodes any
assumption about the sensor propositions, and thus about the
behavior of the environment, and ϕs represents the desired
behavior of the system. ϕe and ϕs in turn have the structure
ϕe = ϕe

i ∧ ϕe
t ∧ ϕe

g , ϕs = ϕs
i ∧ ϕs

t ∧ ϕs
g , where

• ϕe
i and ϕs

i are non-temporal Boolean formulas con-
straining the initial value(s) for the sensor and system
propositions respectively.
• ϕe

t represents assumptions a user may define about pos-
sible behaviors of the environment, and consists of a con-
junction of formulas of the form �Ai where each Ai is a
Boolean formula with sub-formulas in X∪Y∪©X , where
©X = {©x1, ...,©xn}. Intuitively, ϕe

t constrains the
next sensor values ©X based on the current sensor X
and system Y values. Similarly, ϕs

t represents restrictions
on the robot’s behavior (safety constraints); it consists of
a conjunction of formulas of the form �Ai where each
Ai is a Boolean formula in X ∪ Y ∪ ©X ∪ ©Y (the
system’s next state can depend on the next sensor values
as well as the current sensor values and system actions).
ϕs
t also contains ϕtrans as a subformula.

• ϕe
g and ϕs

g represent assumptions on the environment
and desired goal behaviors for the system respectively.
Both formulas consist of a conjunction of formulas of
the form � �Bi where each Bi is a Boolean formula.
In viewing these formulas as corresponding to system and

environment properties, we sometimes refer to ϕs
t and ϕe

t

as safety and ϕs
g and ϕe

g as liveness properties.
Given an LTL formula, the synthesis problem consists

of constructing an automaton whose behaviors satisfy the
formula if such an automaton exists. In general, creating
such an automaton is proven to be doubly exponential in
the size of the formula. However, by restricting ourselves to
the special class of formulas described above, we can use the
efficient algorithm introduced in [17], which is polynomial
time O(n3), where n is the number of states. We refer the
reader to [17] and [14] for a full description of the synthesis
procedure and how it is applied to generate the robot
controller. For a description of how the extracted discrete
automaton is transformed into low-level robot control, we
refer the reader to [14], [10]. However, if the environment
can falsify ϕs, we say that the environment is winning and
the desired behavior is unsynthesizable.

The fire-fighting specification in Example 1 is synthesiz-
able, and Fig. 2 shows an excerpt of a synthesized automaton;
the full automaton has 216 states. Each state is labeled by
the location and action propositions that are true in that state,
and each transition is labeled with sensor propositions that
must be true for that transition to be enabled.

IV. UNSYNTHESIZABLE SPECIFICATIONS AND
UNDESIRABLE BEHAVIOR

Example 2. Recall the synthesizable fire-fighting specifica-
tion in Listing 1. Consider what happens if we remove the
environment safety requirement in line 3, which states that
the robot will never see a person when in the porch.

The resulting specification is unsynthesizable, and in par-
ticular it is unrealizable, because the environment can force
the robot into a safety violation by setting πperson to true and
πhazardous item to false in the porch; the robot will radio in
the next time step (©πradio is enforced by line 7), and the
system safety then requires it to both stay where it is (i.e.,
(©ϕporch) in line 8), and simultaneously satisfy ¬©ϕporch

(line 6) – the system thus has no legal next state.



Fig. 2: Excerpt of “fire-fighting” automaton.

A. Unsynthesizable Categories

As mentioned before, there are several possibilities to
be considered when reasoning about a specification that
cannot be synthesized, or one that results in generation of a
controller that does not behave as intended.

1) Unsatisfiability: Consider this simple yet illustrative
specification in the fire-fighting scenario:

Always not porch �¬©ϕporch (in ϕs
t )

Visit porch � �ϕporch (in ϕs
g)

This specification is not synthesizable, and in particular it
is unsatisfiable, since ϕs

t and ϕs
g are inconsistent no matter

what the environment does.
2) Unrealizability: Now consider the following

specification (separate from the one above):

If you are sensing person then do porch
�(πperson ⇒©ϕporch) (in ϕs

t )

Depending on the current location, ϕtrans does not always
allow ©ϕporch. For example, if the robot sees a person in
the bedroom, it cannot reach the porch in the next discrete
step (since it has to pass another region first). Therefore, if
the system senses a person, then there may be no further
transitions satisfying the robot safety; the environment can
thus win from some initial states (e.g. bedroom) by making
πperson true. This specification is unrealizable, but not
unsatisfiable – there are environment strategies for which the
system achieves its goal, such as one that never sets πperson.

Symmetric to system unrealizability, we can just as well
consider winning system strategies that prevent the environ-
ment from satisfying the formula ϕe. Overloading termi-
nology, we say that the environment is unrealizable in this
case. For example, if the environment safety condition in the
above example were to include “If you were in porch then
do not person and do person”, then the environment would
be unrealizable if the system can go to the porch, and the
system would win regardless of whether it fulfilled its goals.

3) Undesirable Behavior after Synthesis: Consider the
same map again, with the following specification:

Always not porch �¬©ϕporch (in ϕs
t )

Visit porch � �ϕporch (in ϕs
g)

Sense person and do not sense person
�(©πperson ∧©¬πperson) (in ϕe

t )

Here ϕe
t is unsatisfiable, so ϕe is unsatisfiable. Since the

antecedent of the implication is always false, the formula
ϕe =⇒ ϕs is satisfied by any automaton, and all initial
states are winning for the system, even though the system
itself is also unsatisfiable. The algorithm in [17] returns a
trivial automaton consisting of all the initial states, but no
transitions between states. Since the automaton is augmented
with self-loops at the controller level, a controller based on
this automaton would cause the robot to stay in the start state
indefinitely – this is likely not the behavior desired.

We see in the above examples that when the algorithm
does not return an automaton, there is some ambiguity in
what went wrong. In particular, an unsynthesizable specifica-
tion ϕe =⇒ ϕs is either unrealizable or unsatisfiable. Even
once we know which of these is the case, there is further
ambiguity surrounding the cause of the unsatisfiability/unre-
alizability of the specification. In addition, we see that if ϕe

is unsatisfiable, then we get a trivial automaton.

B. Causes of Failure

Above we detailed the distinction between unsatisfiable
and unrealizable specifications. In either case, failure occurs
either if it is possible for the environment to steer the
corresponding two-player game into a state from which the
system has no valid move (as in Example IV-A.1), or if the
environment can prevent the system from satisfying one of
the liveness conditions (goals) (as in Example IV-A.2). We
call the former case deadlock and the latter case livelock.

C. Identifying Deadlock

We wish to characterize the set of “bad” states from which
the environment can force the system into a state such that
every transition will violate the system safety (in which case
the system has no next move in the game in [17]). We can do
this using the modal µ-calculus, which extends propositional
modal logic with least and greatest fixpoint operators µ, ν
[12]. We define the µ-calculus over game structures as in
[17]. A formula ϕ is interpreted as the set of states JϕK in
which ϕ is true. We also make use of the logical operator �©
– informally, a state s is included in J �©ϕK if the system can
force the play to reach a state in JϕK, regardless of how the
environment moves from s. For example, if the environment
safety condition includes “If you were in porch then do not
person”, then any state in which the system is in the porch
would be included in J �©¬πpersonK, since the environment
cannot activate πperson in the next state. Similarly, operator
©� is defined such that a state s is included in J©�ϕK if the
environment can force the play to reach a state in JϕK.

The set of “bad” states is now characterized by the
fixpoint formula µX. X ∨©�X , and constructed by having
X initialized to FALSE and updated at each iteration with
X ← X ∨©�X until two iterations are identical. Intuitively,



at each iteration of the fixpoint computation, we add in
states such that the environment can force the system into
the “bad” set. The fixpoint set therefore characterizes all
states that can reach a system safety violation. If this set of
bad states contains an initial state, then the environment can
eventually force the system to violate its safety conditions
from that initial state, thereby winning the game. Similarly,
the system can force the environment into deadlock from
states satisfying µX. X ∨ �©X .

V. ALGORITHM FOR ANALYSIS OF SPECIFICATIONS

Given a specification, we would like to leverage what we
know about the synthesis procedure to determine whether
each of ϕe and ϕs is unrealizable or unsatisfiable, and present
the user with this information. We assume we are given the
input specification parsed into some representation of the
environment (ϕe) and robot (ϕs) LTL formulas, and apply a
series of tests to determine whether each is unrealizable or
unsatisfiable. In LTLMoP, the synthesis algorithm is imple-
mented in the JTLV framework [19], with the corresponding
formulas for the initial conditions, transitions and goals
represented as Binary Decision Diagrams (BDDs) [15]. The
BDD corresponding to a formula is a compact representation
of the set of satisfying proposition value combinations, and
enables efficient operations on these sets.

In Algorithm 1, AUT SET is a BDD representating
the set of all implementing control automata generated
by the synthesis algorithm SY NTHESIS (AUT SET =
FALSE if the specification is unsynthesizable). In the BDD
representation, FALSE denotes the empty set, and TRUE
denotes the set of all automata. The set of all possible coun-
terstrategies CTR SET is constructed using the algorithm
COUNTERSTRATEGY , adapted from [11]. Lines 9-14
check for the unsatisfiability of the initial conditions and the
transitions relation (safety) for both environment and system.
• Recall that ϕe

t and ϕs
t consist of a conjunction of formulas

of the form �Ai where each Ai is a Boolean formula, so
for either of these, we can perform an emptiness check
on the BDD representing the set of variable assignments
satisfying ϕp

i

∧
iAi to determine if the transitions in a

single time step are satisfiable.
• The above check will not identify unsatisfiability of fol-

lowing the transitions over multiple time steps; for exam-
ple, the transition relation �(πpick up =⇒ ©πpick up)∧
�(πpick up =⇒ ¬©πpick up) ∧ �(¬πpick up =⇒
©πpick up) is unsatisfiable when starting from the initial
condition ¬πpick up, because πpick up is true in the second
time step leading to no valid transitions (since any valid
transition would satisfy both πpick up and ¬πpick up);
however our analysis so far will not detect this. For
such “multi-step” unsatisfiability of the transitions, we
compute the set of environment counterstrategies (which
provide sensor inputs such that there is no robot response
fulfilling the specification), using a construction similar
to [11], and allowing all environments (i.e. setting ϕe =
True). If every sequence of environment moves is in this
counterstrategy, then the system must be unsatisfiable.

Algorithm 1 Algorithm for Analyzing a Specification

1: ϕp
t =

∧
j �A

p
j , ϕ

p
g =

∧np
g

i=1 � �B
p
i for p ∈ {s, e}

2: AUT SET ← SY NTHESIS(s, e)
3: if AUT SET ! = FALSE (spec. is synthesizable) then
4: AUT ← AUT SET
5: if AUT SET has no transitions then
6: flag as trivial
7: else
8: CTR SET ← COUNTERSTRATEGY (s, e)
9: if ϕp

i == FALSE then
10: player p has unsatisfiable initial conditions
11: if ϕp

i ∧
∧

iA
p
i == FALSE then

12: p has unsatisfiable transitions
13: if ∀σ ∈ CTR SET (resp. ∀σ ∈ AUT SET ), σ leads to

deadlock then
14: s (resp. e) transitions unsatisfiable from initial conditions
15: for i := 1 to np

g do
16: if Bp

i == FALSE then
17: p goal i is unsatisfiable
18: for i := 1 to np

g do
19: if Bp

i ∧
∧

j A
p
j == FALSE OR ©Bp

i ∧
∧

j A
p
j ==

FALSE then
20: p is unsatisfiable between goal i and transitions
21: if ∃σ ∈ CTR SET (resp. ∃σ ∈ AUT SET ), σ leads to

deadlock) then
22: s (resp. e) unrealizable; can be forced into a safety violation
23: for i := 1 to ns

g do
24: ϕsi

g =
∧i

k=1 � �B
s
k, ϕ

si
t = ϕs

t , ϕ
si
i = ϕs

i

25: ϕei
i = True, ϕei

t = True, ϕei
g = True

26: AUTi ← SY NTHESIS(si, e)
27: if AUT SETi == FALSE (unsynthesizable) then
28: CTR SETi ← COUNTERSTRATEGY (si, ei)
29: if CTR SETi == TRUE then
30: ith system goal inconsistent with the transition relation
31: else if AUT SETi−1 ! = FALSE then
32: ith system goal is unrealizable
33: for i := ne

g to 1 do
34: ϕsi

i = True, ϕsi
t = True, ϕsi

g = ϕs
g

35: ϕei
g =

∧ne
g

k=i � �B
e
k, ϕ

ei
t = ϕe

t , ϕ
ei
i = ϕe

i

36: AUT SETi ← SY NTHESIS(si, ei)
37: if AUT SETi ! = FALSE (synthesizable) then
38: if AUT SETi == TRUE, AUT SETi+1 ! = TRUE

then
39: ith environment liveness inconsistent with transitions
40: else if AUT SETi+1 == FALSE then
41: ith environment liveness condition is unrealizable

Moreover, if every sequence of environment moves forces
the system into deadlock (rather than livelock), the system
safety is unsatisfiable; we identify this (in lines 13-14) with
a fixpoint computation as described earlier. The symmetric
case for multi-step unsatisfiable environment transitions
finds the set of system winning strategies (setting ϕi

s =
ϕt
s = True) and checks that every sequence of system

actions is winning.
We now turn to checking for unsatisfiability of system and

environment liveness in lines 15-20.
• Any liveness condition ϕp

g consists of a conjunction of
clauses of the form � �Bi, and the safety ϕp

t consists of a
conjunction of formulas of the form �Aj . A contradiction
in ϕp

g ∧ϕ
p
t implies that some � �Bi is inconsistent with∧

j �Aj , i.e., �Bi is inconsistent with
∧

j �Aj . The



Fig. 3: Analyzing an unsynthesizable specification

Ajs in the transition formula govern proposition values in
the current and next time steps (as described in Section
III-B), and in order for a goal Bi to be satisfied infinitely
often, it needs to be consistent with each Aj in both the
current and next time steps (so there are valid transitions
into and out of each goal state). We do this by checking
Bi∧

∧
j Aj and©Bi∧

∧
j Aj for consistency – if either is

inconsistent, then liveness condition Bi cannot be fulfilled
infinitely often while following the transitions allowed by
the safety.
• This check is once again not complete, and to detect

multi-step unsatisfiability we look at the counterstrategy/s-
trategy and check that they lead to livelock for the system
(lines 29-30) and environment (38-39).

If we do not detect system unsatisfiability, we might still
have an unrealizable system specification. To win from an
initial state of the game, the environment must either force
the system into deadlock or livelock. As described earlier,
a reachability analysis using fixpoint operators suffices to
check that there is some sequence of environment actions that
forces the system into deadlock (lines 21-22), and a symmet-
ric operation checks for the system forcing the environment
into deadlock. To illustrate our analysis when the system is
unrealizable because of the safety conditions, consider again
the fire-fighting specification in Example 2. As mentioned in
Section IV, this specification fails to produce a controller, and
it is difficult to determine where the problem by inspection
alone. Our tests find that the system is unrealizable because
the environment can force a safety violation, directing the
user’s attention to the highlighted sentences (as in Fig. 3).

If the (unrealizable) system cannot be forced into a safety
violation, there exists and environment strategy to “lock”
the system out of some liveness; we can determine which
one by adding the liveness conditions in incrementally to
see when synthesis fails (this involves running the syn-
thesizability check once for each liveness condition – see

lines 23-32). Additionally, if the environment counterstrategy
(allowing all environment transitions) is TRUE, then the
system is in fact unsatisfiable due to the current set of
goals; this test is complete for system unsatisfiability or
unrealizability. A symmetric test for the environment runs
the synthesis algorithm starting with all environment live-
ness conditions, allows all system transitions, and removes
environment liveness conditions one by one (lines 33-41).
If removing an environment liveness condition makes the
specification unsynthesizable, the system’s winning strategy
involved falsifying that liveness, and hence the removed
environment liveness was unrealizable (or unsatisfiable if
every system strategy is winning after its removal but not
before). This however is not a complete test, and there exist
cases of environment unrealizability that will not be detected.

In addition to checking for unsatisfiability and unrealiz-
ability, trivial automata are easily identified by checking the
synthesized automaton for the existence of transitions, as in
lines 3-5. By notifying the user prior to execution if the
environment is unsatisfiable or unrealizable, we warn them
that the behavior generated may not be as intended.

VI. INTERACTIVE EXPLORATION OF UNREALIZABLE
SPECIFICATIONS

In addition to providing explicit feedback on the specifi-
cation, we provide the user with implicit insights into the
failure via an interactive game. We apply a counterstrategy
synthesis algorithm similar to that in [11] to extract a strategy
for the environment, which finds sequences of environment
actions such that there is no robot response fulfilling the
specification. The user interacts with this strategy by select-
ing the robot actions and movement at every time step in
response to the sensor inputs provided by LTLMoP. The user
can change the state of robot actuators by clicking toggle
buttons, and select a region to move to by clicking on a map.
Available choices are automatically constrained according to
the system safety conditions: forbidden regions are blacked
out on the map, and illegal action choices raise an error.

Listing 2 Example of unrealizable specification to be analyzed.

1 Robot starts with false
2 Robot starts in deck
3 Visit porch
4 If you are sensing person then do not kitchen
5 If you are sensing fire then do not living
6 Always do not (fire and person)
7 Always do not radio

Consider the specification in Listing 2. The environment
can prevent the robot from satisfying its goal (to visit the
porch infinitely often) by alternately enabling πfire and
πperson, thereby trapping the robot in the deck and bedroom,
i.e. away from the porch. The first three steps of this
(infinite) counterstrategy are shown being played through in
the Counterstrategy Visualization Tool in Figure 4. The first
step is the setting of a valid initial condition from which the
environment can win: the robot is in the deck and all other
sensor and action propositions are set to false. Second, the



(a) Robot starts in the deck, environment’s first move turns person on.

(b) Robot is moved to bedroom; envi-
ronment turns off person and turns on
fire, preventing living.

(c) The robot is moved back to the deck,
turns off fire and turns on person, and
is back where it started.

Fig. 4: Interactive Game

environment enables πperson so the robot cannot enter the
kitchen and is in the next step confined (by the adjacency
graph in Fig. 1(c)) to the deck and bedroom as depicted
in Fig. 4(a). The user responds by moving the robot to the
bedroom, and so the environment then switches to enabling
πfire and disabling πperson as required by line 6 (Fig. 4(b));
this prevents the robot from entering the living room, and
the user returns to the deck. Now we are back to the original
configuration, and the environment again switches on πperson
and turns off πfire, as shown in Fig. 4(c); at this point
it should be clear to the user why the task is unrealizable
– the environment can keep it out of the porch. A video
demonstrating the above example is included with this paper.

VII. CONCLUSIONS AND FUTURE WORK

We address the problem of providing automated feedback
to the user when a specification for autonomous robot behav-
ior does not have an implementing controller. By exploiting
the structure of the specification, we narrow down the possi-
ble reasons for failure to create a robot controller, and direct
the user’s attention to relevant portions of the specification,
enabling iterative convergence to a working specification.
We also allow the user to explore the cause of failure in
an unsynthesizable specification by means of an interactive
game. Our approach is implemented as part of the open
source LTLMoP toolkit. Future work will leverage existing
and novel techniques to further isolate the source of failure
and provide the user with additional feedback, including
modifications to the input that would enable synthesis of
an implementing automaton. If the system or environment is

found unsatisfiable, we can further narrow down the cause
of this unsatisfiability, by finding an unsatisfiable core. If
the system is unrealizable, we can compute the unrealizable
core, or add additional environmental assumptions.

REFERENCES

[1] Ilan Beer, Shoham Ben-David, Hana Chockler, Avigail Orni, and
Richard J. Trefler. Explaining counterexamples using causality. In
Computer Aided Verification, pages 94–108, 2009.

[2] Amit Bhatia, L. E. Kavraki, and M. Y. Vardi. Sampling-based motion
planning with temporal goals. IEEE, 2010.

[3] Roderick Paul Bloem, Alessandro Cimatti, Karin Greimel, Georg
Hofferek, Robert Könighofer, Marco Roveri, Viktor Schuppan, and
Richard Seeber. RATSY - a new requirements analysis tool with
synthesis. In Computer Aided Verification, volume 6174, 2010.

[4] Martin Buehler, Karl Iagnemma, and Sanjiv Singh, editors. The
DARPA Urban Challenge: Autonomous Vehicles in City Traffic, George
Air Force Base, Victorville, California, USA.

[5] Krishnendu Chatterjee, Thomas A. Henzinger, and Barbara Jobstmann.
Environment assumptions for synthesis. In International Conference
on Concurrency Theory, CONCUR ’08, 2008.

[6] Alessandro Cimatti, Marco Roveri, Viktor Schuppan, and Andrei
Tchaltsev. Diagnostic information for realizability. In Verification,
Model Checking, and Abstract Interpretation, pages 52–67, 2008.

[7] Alessandro Cimatti, Marco Roveri, Viktor Schuppan, and Stefano
Tonetta. Boolean abstraction for temporal logic satisfiability. In
Computer Aided Verification, pages 532–546, 2007.

[8] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model
Checking. MIT Press, 1999.

[9] Georgios E. Fainekos. Revising temporal logic specifications for
motion planning. In IEEE International Conference on Robotics and
Automation, 2011.

[10] Cameron Finucane, Gangyuan Jing, and Hadas Kress-Gazit. LTLMoP:
Experimenting with language, temporal logic and robot control. In
IEEE/RSJ International Conference on Intelligent Robots and Systems,
pages 1988 – 1993, 2010.

[11] Robert Könighofer, Georg Hofferek, and Roderick Bloem. Debug-
ging formal specifications using simple counterstrategies. In Formal
Methods in Computer-Aided Design, pages 152–159, 2009.

[12] Dexter Kozen. Results on the propositional mu-calculus. Theoretical
Computer Science, 27:333–354, 1983.

[13] Hadas Kress-Gazit, Georgios E. Fainekos, and George J. Pappas.
Translating structured english to robot controllers. Advanced Robotics,
22(12):1343–1359, 2008.

[14] Hadas Kress-Gazit, Georgios E. Fainekos, and George J. Pappas.
Temporal-logic-based reactive mission and motion planning. IEEE
Transactions on Robotics, 25(6):1370–1381, 2009.

[15] C.Y. Lee. Representation of switching circuits by binary-decision
programs. Bell Systems Technical Journal, 38:85999, 1959.

[16] M.Kloetzer and C.Belta. A fully automated framework for control of
linear systems from temporal logic specifications. IEEE Transactions
on Automatic Control, 53(1):287–297, 2008.

[17] Nir Piterman and Amir Pnueli. Synthesis of reactive(1) designs. In
Verification, Model Checking, and Abstract Interpretation, pages 364–
380. Springer, 2006.

[18] Amir Pnueli. The temporal logic of programs. Foundations of
Computer Science, Annual IEEE Symposium on, 0:46–57, 1977.

[19] Amir Pnueli, Yaniv Sa’ar, and Lenore D. Zuck. JTLV: A framework
for developing verification algorithms. In Computer Aided Verification,
pages 171–174, 2010.

[20] Vasumathi Raman and Hadas Kress-Gazit. Analyzing unsynthesiz-
able specifications for high-level robot behavior using LTLMoP. In
Computer Aided Verification, pages 663–668, 2011.

[21] Kristin Y. Rozier and Moshe Y. Vardi. LTL satisfiability checking.
In 14th Workshop on Model Checking Software (SPIN ’07), volume
4595 of Lecture Notes in Computer Science (LNCS), pages 149–167.
Springer-Verlag, 2007.

[22] Viktor Schuppan. Towards a notion of unsatisfiable cores for LTL. In
Fundamentals of Software Engineering, pages 129–145, 2009.

[23] Tichakorn Wongpiromsarn, Ufuk Topcu, and Richard M. Murray.
Receding horizon control for temporal logic specifications. In ACM
International Conference on Hybrid Systems: Computation and Con-
trol, pages 101–110, 2010.


