
Analyzing Unsynthesizable Specifications for High-Level
Robot Behavior Using LTLMoP

Vasumathi Raman and Hadas Kress-Gazit ?

Cornell University,
Ithaca, NY, USA 14853

vraman@cs.cornell.edu,hadaskg@cornell.edu

Abstract. Recent work in robotics has applied formal verification tools to au-
tomatically generate correct-by-construction controllers for autonomous robots.
However, when it is not possible to create such a controller, these approaches do
not provide the user with feedback on the source of failure, making the experience
of debugging a specification somewhat ad hoc and unstructured, and a source of
frustration for the user. This paper describes an extension to the LTLMoP toolkit
for robot mission planning that encloses the control-generation process in a layer
of automated reasoning to identify the cause of failure, and targets the users at-
tention to flawed portions of the specification.

Keywords: synthesis, LTL, GR(1), unrealizability, unsatisfiability, robot control

1 Introduction

High-level robot control is a topic of current research in robotics. The goal is to auto-
matically generate controllers for autonomous robots to achieve desired high-level be-
havior involving a non-trivial sequence of actions, such as, “collect all my socks from
the apartment floor and put them in the laundry bag”. Recent work in robotics [11, 15]
has applied efficient synthesis techniques [12] to automatically generate provably cor-
rect, closed loop, low-level robot controllers that satisfy high-level behaviors specified
in temporal logic. A discrete abstraction of the workspace is used, and the robot goals
and environment assumptions are described using Linear Temporal Logic, which can
express a rich set of infinite behaviors. The generated continuous robot controllers are
provably correct in that the closed loop system they form is guaranteed, by construc-
tion, to satisfy the desired specification when the robot operates in an environment that
satisfies the modeled assumptions.

However, such synthesis-based approaches present the user with no feedback when
synthesis is impossible, i.e., when there exists an environment in which the robot fails to
achieve the desired behavior – we call such a specification unsynthesizable. An unsyn-
thesizable specification is either unsatisfiable, in which case the robot cannot achieve
the desired behavior in any environment, or unrealizable, in which case there exist en-
vironments that can thwart the robot. When the specification is unsynthesizable, the

? This work was supported by NSF CAREER CNS-0953365 and ARO MURI (SUBTLE)
W911NF-07-1-0216



2 Vasumathi Raman and Hadas Kress-Gazit

above approaches fail to produce the desired behavior, but do not provide the user with
a source of failure, or suggest changes that would allow synthesis of a controller. In
addition, even when synthesis is possible, the generated automaton may fail to produce
the desired behavior for reasons that involve unsatisfiability or unrealizability of the
environment assumptions. This can make the experience of debugging a specification
somewhat ad hoc and unstructured, and a source of frustration. This paper describes a
procedure for enclosing the control-generation process in a layer of automated reason-
ing that focuses the cause of failure and targets the users attention to relevant portions
of the specification. We present a method of narrowing down the source of unsynthe-
sizability in specifications that can be represented as GR(1) formulas in LTL.

The debugging procedure described in this paper is implemented within Linear
Temporal Logic MissiOn Planning (LTLMoP)[8], an open source, modular, Python-
based toolkit that allows users to input structured English specifications describing
high-level robot behavior, and automatically generates and implements the relevant
hybrid controllers using the approach of [11]; the synthesized controllers can be em-
bedded within a simulator or used with physical robots. The most recent version of
LTLMoP can be downloaded online1. There has been considerable previous work on
analyzing unsatisfiable and unrealizable LTL formulas [2, 4–6, 14]. Our work is most
closely related to that of [9], who present an interactive tool, RATSY [3] for demonstrat-
ing specification unrealizability. The debugging procedure we implement for LTLMoP
differs from RATSY in that rather than allowing the user to explore counterexamples, it
provides explicit information about specification components in the context of the robot
control problem. We highlight flawed portions of the user-defined specification (either
desired system behavior or environment assumptions), and identify cases of unexpected
behavior that specifically affect this domain, such as trivial solutions.

2 Technical Overview

We first review some preliminaries relating to the application of formal methods to high-
level robot control, and outline LTLMoP’s controller-synthesis procedure (depicted in
Fig. 1). We consider a robot functioning in a continuous environment. The robot re-
acts to the environment as perceived through its sensor inputs, and chooses from a set
of actions including moving between adjacent locations. The tasks themselves include
infinite behaviors such as visiting locations or performing actions infinitely often.

Applying formal methods techniques such as model checking and synthesis to con-
tinuous settings in robotics requires a discrete abstraction of problems to enable de-
scription with a formal language. As mentioned earlier, the underlying formal language
used to define high-level specifications in this work is Linear Temporal Logic (LTL) (cf.
[7]). LTLMoP includes a parser that automatically translates English sentences from a
defined grammar [10] into LTL formulas. This allows users to define desired robot be-
haviors (including reactive behaviors) and specify assumptions on the environment’s
behavior using an intuitive descriptive language rather than the underlying formalism.

As shown in Fig. 1, LTLMoP takes as input a user-defined specification, a map of
the environment and a description of the robot sensors and actuators. The specification

1 http://ltlmop.github.com



Analyzing Unsynthesizable Specifications with LTLMoP 3

Fig. 1: Overview of LTLMoP architecture

is parsed into a formula of the form ϕ = (ϕe ⇒ ϕs), where ϕe includes assumptions
about the sensor propositions, and thus about the behavior of the environment, and ϕs
represents the desired robot behavior. ϕ is in the subclass of LTL described in [12],
and the efficient algorithm introduced therein is used to synthesize an automaton that
implements the input specification with the described robot in the given environment.
The synthesis algorithm is implemented in the JTLV framework [13], with formulas
for the system and environment initial conditions, transitions and goals represented as
Binary Decision Diagrams (BDDs).

The created automaton is correct-by-construction: if a behavior can be achieved in
all environments satisfying the given assumptions, then the LTL formula describing
the behavior holds for every possible execution of the automaton. This implementing
discrete automaton is then viewed as a hybrid controller, wherein a transition between
states corresponds to the activation of one or more atomic continuous controllers that



4 Vasumathi Raman and Hadas Kress-Gazit

satisfy the bisimulation property [1] (e.g., the motion controllers are guaranteed to drive
the robot from one region to another regardless of the initial state within the region).

We refer the reader to [11] for a complete discussion of the hybrid controller, and
to [8] for a description of how atomic controllers are incorporated into the hybrid con-
troller in LTLMoP. Finally, the synthesized hybrid controller can be embedded within a
simulator or used with physical robots (such as the Pioneer 3-DX depicted in Fig. 1).

3 Unsynthesizable Specifications and Undesirable Behavior

A specification ϕe =⇒ ϕs that does not produce a controller is either unrealizable
or unsatisfiable, and there are several possible reasons for either. In addition, if ϕe is
unsatisfiable, then all initial states are winning for the system, and so we do get an
automaton, but a trivial one consisting of all the initial states but no transitions. We
would like to identify this case, since the resulting behavior is probably not as intended.

With regards to unrealizability, we can just as well consider winning system strate-
gies that prevent the environment from satisfying the formula ϕe. Overloading termi-
nology, we say that the environment is unrealizable in this case. Note that if the environ-
ment is unrealizable, an otherwise unrealizable robot specification may be synthesizable
if the robot can win by preventing the environment from upholding its assumptions. In
fact, if the environment is unsatisfiable, every robot specification (even an unsatisfiable
one) is synthesizable. In the robotics domain, we would like to flag this case, since we
would like the robot to fulfill its goals rather than thwart the given environment.

(a) Analyzing an unsynthesizable specification (b) Trivially synthesizable spec.

Fig. 2



Analyzing Unsynthesizable Specifications with LTLMoP 5

Listing 1 Excerpt of a fire-fighting scenario specification with corresponding LTL

1 Env starts with false ¬πperson ∧ ¬πhazardous item

2 Robot starts with false ¬πpick up ∧ ¬πdrop ∧ ¬πcarrying item

3 Robot starts in porch ϕporch

4 If you were in porch then do not person 0(ϕporch ⇒ ¬2πperson)
5 If you were in porch then do not 0(ϕporch → ¬2πhazardous item)

hazardous item
6 Do pick up if and only if you are sensing 0(2πpick up

hazardous item and you are not activating ⇔ (2πhazardous item ∧ ¬2πcarrying item))
carrying item

7 If you did not activate carrying item then 0(¬πcarrying item → ¬2ϕporch)
always not porch

8 Do radio if and only if you are sensing person0(2πradio ⇔2πperson)
9 If you are activating radio or you were

activating radio then stay there 0((2πradio ∨ πradio) →
∧
l

(ϕl ⇔2ϕl))

10 If you are not activating carrying item and 01((¬πcarrying item ∧ ¬πradio) → ϕdining)
you are not activating radio then visit dining ...

4 Analyzing a Specification in LTLMoP

Given an unsynthesizable specification in LTLMoP, we apply a series of simple checks
to determine which components of the corresponding LTL formula are flawed, trace
them back to their structured English counterparts, and highlight these in the Specifica-
tion Editor. We identify unsatisfiability of the system and environment initial conditions,
single-step transitions, goals, and the conjunction of transitions and goals using boolean
satisfiability tests, without checking the LTL specification as a whole. As a result, some
unsatisfiable safety conditions are identified as unrealizable instead.

Consider the specification in Listing 1 from the fire-fighting scenario described in
[8]. Removing the environment safety requirement in line 4 makes the specification
unrealizable, because the environment can force the robot into a safety violation by
setting πperson to true in the porch. By line 8, this causes the robot to set πradio to
true in the next time step; line 9 then requires it to stay where it is (i.e., 2ϕporch),
but line 7 requires ¬2ϕporch. The robot thus has no legal next state. Our analysis
determines that the system (robot) is unrealizable because the environment can force
a safety violation, and marks all safety sentences as in Fig. 2(a). Consider the same
specification, augmented with the (clearly unsatisfiable) environment safety condition,
Always person and not person (0(πperson ∧ ¬πperson)). Synthesis succeeds, but as noted in Fig.
2(b), the environment liveness is unsatisfiable and the generated automaton is trivial.

5 Conclusions and Future Work

We have described a method for systematically analyzing the environment and system
components of autonomous robot control specifications. By exploiting the structure of



6 Vasumathi Raman and Hadas Kress-Gazit

the specification, we identify possible reasons for failure to create an implementing
robot controller. Our approach is implemented as part of the open source LTLMoP
toolkit. We enclose the synthesis in a layer of reasoning that identifies the cause of fail-
ure, enabling the user to target their attention to the relevant portions of the specification.
Once we identify a specification (or part thereof) as unsatisfiable or unrealizable, there
is still potential for further analysis. Future work will leverage existing techniques [2, 5,
6, 9] to isolate the source of failure and provide the user with comprehensive feedback,
including modifications to the input that would result in an implementing automaton.

References

1. R. Alur, T. A. Henzinger, G. Lafferriere, George, and G. J. Pappas. Discrete abstractions of
hybrid systems. In Proceedings of the IEEE, pages 971–984, 2000.

2. I. Beer, S. Ben-David, H. Chockler, A. Orni, and R. J. Trefler. Explaining counterexamples
using causality. In Computer Aided Verification, pages 94–108, 2009.

3. R. P. Bloem, A. Cimatti, K. Greimel, G. Hofferek, R. Könighofer, M. Roveri, V. Schuppan,
and R. Seeber. RATSY - a new requirements analysis tool with synthesis. In Springer, editor,
Computer Aided Verification, volume 6174 of Lecture Notes in Computer Science, pages 425
– 429, 2010.

4. K. Chatterjee, T. A. Henzinger, and B. Jobstmann. Environment assumptions for synthesis.
In Proceedings of the 19th international conference on Concurrency Theory, CONCUR ’08,
pages 147–161, Berlin, Heidelberg, 2008. Springer-Verlag.

5. A. Cimatti, M. Roveri, V. Schuppan, and A. Tchaltsev. Diagnostic information for realiz-
ability. In F. Logozzo, D. Peled, and L. D. Zuck, editors, VMCAI, volume 4905 of Lecture
Notes in Computer Science, pages 52–67. Springer, 2008.

6. A. Cimatti, M. Roveri, V. Schuppan, and S. Tonetta. Boolean abstraction for temporal logic
satisfiability. In W. Damm and H. Hermanns, editors, CAV, volume 4590 of Lecture Notes in
Computer Science, pages 532–546. Springer, 2007.

7. E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. MIT Press, 1999.
8. C. Finucane, G. Jing, and H. Kress-Gazit. LTLMoP: Experimenting with language, temporal

logic and robot control. In IEEE/RSJ Int’l. Conf. on Intelligent Robots and Systems, pages
1988 – 1993, 2010.

9. R. Könighofer, G. Hofferek, and R. Bloem. Debugging formal specifications using simple
counterstrategies. In Formal Methods in Computer-Aided Design, pages 152–159, 2009.

10. H. Kress-Gazit, G. E. Fainekos, and G. J. Pappas. Translating structured english to robot
controllers. Advanced Robotics, 22(12):1343–1359, 2008.

11. H. Kress-Gazit, G. E. Fainekos, and G. J. Pappas. Temporal-logic-based reactive mission
and motion planning. IEEE Transactions on Robotics, 25(6):1370–1381, 2009.

12. N. Piterman and A. Pnueli. Synthesis of reactive(1) designs. In In Proc. Verification, Model
Checking, and Abstract Interpretation (VMCAI06, pages 364–380. Springer, 2006.

13. A. Pnueli, Y. Sa’ar, and L. D. Zuck. JTLV: A framework for developing verification algo-
rithms. In Computer Aided Verification, pages 171–174, 2010.

14. V. Schuppan. Towards a notion of unsatisfiable cores for LTL. In Fundamentals of Software
Engineering, Third IPM International Conference, pages 129–145, 2009.

15. T. Wongpiromsarn, U. Topcu, and R. M. Murray. Receding horizon control for temporal
logic specifications. In Hybrid Systems, pages 101–110, 2010.


