
Avoiding	 Forge,ulness:	 Structured	
English	 Specifica9ons	 for	 High-‐Level	
Robot	 Control	 with	 Implicit	 Memory	

	
Vasu	 Raman	
Bingxin	 Xu	

Hadas	 Kress-‐Gazit	
(presented	 by	 Cameron	 Finucane)	

	
Cornell	 University	

• High-‐level	 robot	 tasks	
	 	 	 	 	

MoFvaFon	

Patrol	 the	
aisles!	

• High-‐level	 robot	 tasks	
	 	 	 	 	 →	 No	 guarantees!	
	 	 	 	 	

MoFvaFon	

???	

Patrol	 the	
aisles!	

• High-‐level	 robot	 tasks	
	 	 	 	 	 →	 No	 guarantees!	
	
•  Synthesis	 from	 formal	
specificaFons	

	
	 	 	 	 	

MoFvaFon	

	 	 	 	 []<>r1	
&	 []<>r2	
&	 []<>r3	
	 &	 []<>r4!	

• High-‐level	 robot	 tasks	
	 	 	 	 	 →	 No	 guarantees!	
	
•  Synthesis	 from	 formal	
specificaFons	

	 	 	 	 	 →	 UnintuiFve!	
	
	 	 	 	 	

MoFvaFon	

	 	 	 	 []<>r1	
&	 []<>r2	
&	 []<>r3	
	 &	 []<>r4!	

• High-‐level	 robot	 tasks	
	 	 	 	 	 →	 No	 guarantees!	
	
•  Synthesis	 from	 formal	
specificaFons	

	 	 	 	 	 →	 UnintuiFve!	
	
•  IntuiFve	 human	 interface	
	
	
	 	 	 	 	

MoFvaFon	

Visit	 all	
corners	

•  Structured	 English	 input	 →	 Correct	 robot	 control	
•  Grammar	 allows:	

•  CondiFonals	 (“if”,	 “if	 and	 only	 if”)	
•  LocaFve	 preposiFons	 (“between”,	 “near”)	
•  Region	 quanFfiers	 (“any”,	 “all”)	
•  Goals	 (“visit	 all	 checkpoints”)	
•  Safety	 requirements	 (“avoid	 the	 kitchen”)	

Linear	 Temporal	 Logic	 	
Mission	 Planning	 Toolkit	 (LTLMoP)	

	

Cameron	 Finucane,	 Gangyuan	 Jing,	 and	 Hadas	 Kress-‐Gazit.	 	 LTLMoP:	 ExperimenFng	 with	
language,	 temporal	 logic	 and	 robot	 control,	 IROS	 2010.	

•  Structured	 English	 input	 	
	 →	 Linear	 Temporal	 Logic	 formulas	

	
•  Tied	 Fghtly	 to	 underlying	 formalism	 (LTL	
fragment)	

	

LTLMoP	 –	 behind	 the	 scenes	

Linear	 Temporal	 Logic
•  Syntax:	

•  Temporal	 operators:
next	 step	

always	

eventually	

j ::= p | ¬j | j _j |�j |⇤j | ⇤j

Do memo order if and only if you are sensing order

or you were activating memo order

⇤(�m

order

() (�p
order

_m

order

))

If you are activating memo order then visit kitchen

⇤ ⇤(morder

=) p
kitchen

)

⇤(�m f , (�f _m f))

1

j ::= p | ¬j | j _j |�j |⇤j | ⇤j

Do memo order if and only if you are sensing order

or you were activating memo order

⇤(�m

order

() (�p
order

_m

order

))

If you are activating memo order then visit kitchen

⇤ ⇤(morder

=) p
kitchen

)

⇤(�m f , (�f _m f))

1

j ::= p | ¬j | j _j |�j |⇤j | ⇤j

Do memo order if and only if you are sensing order

or you were activating memo order

⇤(�m

order

() (�p
order

_m

order

))

If you are activating memo order then visit kitchen

⇤ ⇤(morder

=) p
kitchen

)

⇤(�m f , (�f _m f))

1

j ::= p | ¬j | j _j |�j |⇤j | ⇤j

Do memo order if and only if you are sensing order

or you were activating memo order

⇤(�m

order

() (�p
order

_m

order

))

If you are activating memo order then visit kitchen

⇤ ⇤(morder

=) p
kitchen

)

⇤(�m f , (�f _m f))

1

“If	 you	 are	 given	 an	 order	 then	 go	 to	 the	 kitchen”	

Example

“If	 you	 are	 given	 an	 order	 then	 go	 to	 the	 kitchen”	
	 	 	 What	 is	 the	 right	 LTL	 formula	 to	 capture	 this?	

Example

Example

“If	 you	 are	 given	 an	 order	 then	 go	 to	 the	 kitchen”	
	 	 	 	 	 	 	 	 	 What	 is	 the	 right	 LTL	 formula	 to	 capture	 this?	
	

•  IniFal	 guess	 (direct	 translaFon):	
	

	
	
	
	
	

j ::= p | ¬j | j _j |�j |⇤j | ⇤j

m order is set on order and never reset

⇤(�m

order

, (�p
order

_m

order

))

If you are activating m order then visit kitchen

⇤ ⇤(morder

) p
kitchen

)

If you are sensing order then visit kitchen

⇤ ⇤(porder

) p
kitchen

)

⇤(�m f , (�f _m f))

1

“If	 you	 are	 given	 an	 order	 then	 go	 to	 the	 kitchen”	
	
Implicit	 memory:	 	

•  	 Need	 to	 remember	 an	 order	 was	 received	

Example

Example

“If	 you	 are	 given	 an	 order	 then	 go	 to	 the	 kitchen”	
	 	 	 	 	 	 	 	 	 What	 is	 the	 right	 LTL	 formula	 to	 capture	 this?	
	

•  SpecificaFon	 for	 desired	 behavior	
	
	
	

j ::= p | ¬j | j _j |�j |⇤j | ⇤j

m order is set on order and never reset

⇤(�m

order

, (�p
order

_m

order

))

If you are activating m order then visit kitchen

⇤ ⇤(morder

) p
kitchen

)

⇤(�m f , (�f _m f))

1

This	 paper	

l  Allow	 users	 to	 specify	 tasks	 that	 include	
event	 memory	

	
l  AutomaFcally	 define	 “memory	
proposiFons”	

Memory	 ProposiFons

•  Implicit

•  Not	 defined	 by	 user

•  Only	 appear	 in	 LTL,	 not	 structured	 English

•  Respond	 to	 the	 explicitly	 specified	 event
•  	 	 	 	 	 	 	 	 	 	 responds	 to	 event

•  Example:

j ::= p | ¬j | j _j |�j |⇤j | ⇤j

m order is set on order and never reset

⇤(�m

order

, (�p
order

_m

order

))

If you are activating m order then visit kitchen

⇤ ⇤(morder

) p
kitchen

)

If you are sensing order then visit kitchen

⇤ ⇤(porder

) p
kitchen

)

m f f ⇤(�m f , (�f _m f))

1

j ::= p | ¬j | j _j |�j |⇤j | ⇤j

m order is set on order and never reset

⇤(�m

order

, (�p
order

_m

order

))

If you are activating m order then visit kitchen

⇤ ⇤(morder

) p
kitchen

)

If you are sensing order then visit kitchen

⇤ ⇤(porder

) p
kitchen

)

m f f ⇤(�m f , (�f _m f))

1

After/once Q
1

then Q
req

until Q
2

⇤(�m

truck

, (�p
truck

_m

truck

))

^ ⇤(�m

truck dock

, ((�p
dock

^�m

truck

)_m

truck dock

)

^ ⇤ ⇤(mtruck

) m

truck dock

)

⇤(�m

cust no order

, ((�p
cust

_m

cust no order

)^¬�p
order

))

^ ^
i=1,2,3⇤ ⇤(mcust no order

) p
r

i

)

j ::= p | ¬j | j _j |�j |⇤j | ⇤j

m order is set on order and never reset

⇤(�m

order

, (�p
order

_m

order

))

If you are activating m order then visit kitchen

⇤ ⇤(morder

) p
kitchen

)

If you are sensing order then visit kitchen

⇤ ⇤(porder

) p
kitchen

)

m f f ⇤(�m f , (�f _m f))

After the first time Q
cond

, Q
req

(at least once)

1

Type What to remember? Structured English (S) LTL (M,F)
1 Condition has happened Once Qcond then Qreq sa f e from now on ⇤(m fcond) freq sa f e)^

⇤(�m fcond , (�fcond _m fcond)
After Qcond then Qreq live repeatedly ⇤⇧ (m fcond) freq live)^

⇤(�m fcond , (�fcond _m fcond)
2 Requirement has happened Qreq (at least once) ⇤⇧ (m freq)

⇤(�m freq , (�freq _m freq)
3 Requirement has happened While Qcond then Qreq (at least once) D(fcond) m fcondfreq)

under certain condition ⇤(�m fcond freq , (�freq ^fcond _m freq))
4 Memo is set on Q1 After/once Q1 then Qreq until Q2 D(m f1f2) freq)

and reset on Q2 ⇤(�m f1f2 , ((�f1 _m f1f2)^¬�f2)
*1 ’Only’+cond Only once Qcond then Qreq sa f e from now on LTL in Type 1 +

Only after Qcond then Qreq live repeatedly ⇤((¬�m fcond)) (¬�freq))
*2 requirement + ’only once’ Eventually Qreq live only once LTL in Type 2 + ⇤(m freq) (¬�freq))
*3 requirement under condition If Qcond then eventually Qreq live only once LTL in Type 3 + ⇤(m fcond freq) ¬�freq)

+ ’only once’ If Qcond then Qreq sa f e only once
*4 Memo is self-reset when After each time Qcond , D(m fcondfreq) freq)

the requirement is met Qreq (at least once) ⇤(�m fcondfreq , ((�fcond _m fcondfreq)^
¬�freq)

*5 Condition-Requirement After the first time Qcond , ⇤(�m fcond , (�fcond _m fcond))
memos on both sides Qreq (at least once) ⇤(�m fcond freq , ((�freq ^�m fcond)

_m freq)
D(m fcond) m fcond freq)

TABLE I: Syntax and Grammar

(a) Original transition (b) Forgetfulness

Fig. 1: Forgetfulness with continuous execution

IV. STRUCTURED ENGLISH WITH IMPLICIT MEMORY

This section describes the additional constructs added to
the structured English grammar for automatically generating
and using implicit memory propositions. The new grammar
affords users the expressive power to imply the use of several
kinds of memory propositions, based on which the robot
is constrained to remember events in the history of both
environment and robot behaviors. The presented constructs
extend the grammar described in [15].

A. Structured English Grammar

The syntax and semantics of the new grammar constructs
are listed in Table I. The constructs are grouped into Types,
labeled by the first column of the table. Types 1-4 define the
four basic types of implicit memory propositions, classified
based on the events remembered. Types *1-*5 introduce
derived memory operations that use the four basic types;
details are described in Section IV-B.

The second column of the table explains the events to
be remembered. Types 1-2 are complementary – Type-1
propositions remember that a condition has been satisfied,
while Type-2 propositions remember that a requirement has

been fulfilled. Type-2 propositions are useful for specifying
non-repeated goals. For example, ⇤⇧ (pregion) will drive the
robot to visit the region infinitely often, while ⇤((�m r),
(m r _�pregion)) ^⇤ ⇧ (m r) will not result in repeated
behavior. Type-3 propositions remember that a requirement
has been fulfilled under a specific condition; this allows
specifying the same requirement for multiple conditions.
Type-4 propositions are like Type-1 propositions, but can be
set back to false by a second condition f2. Note that if both
conditions are true, the corresponding Type-4 proposition
will be set to false.

The third column in the table lists the admissible structured
English grammar corresponding to each type of memory.
The symbol Q represents structured English phrases of the
form,“you are activating action”, “visit region”, etc, that
conform to the grammar described in [15]. The composition
of multiple phrases connected by “and/or” is also acceptable.
Furthermore, this work extends the admissible form of Q to
include perfect tense phrases such as “you have sensed/acti-
vated/visited sensor/action”, which correspond to the events
remembered by Type-1 and Type-4 propositions. Note that
in Types 2 and 3, the phrase “at least once” is optional
if following “visit/go to”, and “visit pregion” is translated
into ⇤((�m r), (m r_�pregion))^⇤ ⇧ (m r) in contrast
with the definition in [15]; the new grammar for repeatedly
visiting a region is “Repeatedly visit/go to region”.

The fourth column lists the equivalent LTL formula for
each sentence in the previous column. The symbol f is a
Boolean formula over sensor, action and region propositions.
The structured English phrase Qname corresponds to the
LTL formula fname. The symbol D can represent both ⇤
and ⇤ ⇤. Note that Type-1 propositions impose different
grammatical constraints on safety and liveness requirements
to reduce the ambiguity of the structured English. The other

Grammar	 for	 implicit	 memory	

Type What to remember? Structured English (S) LTL (M,F)
1 Condition has happened Once Qcond then Qreq sa f e from now on ⇤(m fcond) freq sa f e)^

⇤(�m fcond , (�fcond _m fcond)
After Qcond then Qreq live repeatedly ⇤⇧ (m fcond) freq live)^

⇤(�m fcond , (�fcond _m fcond)
2 Requirement has happened Qreq (at least once) ⇤⇧ (m freq)

⇤(�m freq , (�freq _m freq)
3 Requirement has happened While Qcond then Qreq (at least once) D(fcond) m fcondfreq)

under certain condition ⇤(�m fcond freq , (�freq ^fcond _m freq))
4 Memo is set on Q1 After/once Q1 then Qreq until Q2 D(m f1f2) freq)

and reset on Q2 ⇤(�m f1f2 , ((�f1 _m f1f2)^¬�f2)
*1 ’Only’+cond Only once Qcond then Qreq sa f e from now on LTL in Type 1 +

Only after Qcond then Qreq live repeatedly ⇤((¬�m fcond)) (¬�freq))
*2 requirement + ’only once’ Eventually Qreq live only once LTL in Type 2 + ⇤(m freq) (¬�freq))
*3 requirement under condition If Qcond then eventually Qreq live only once LTL in Type 3 + ⇤(m fcond freq) ¬�freq)

+ ’only once’ If Qcond then Qreq sa f e only once
*4 Memo is self-reset when After each time Qcond , D(m fcondfreq) freq)

the requirement is met Qreq (at least once) ⇤(�m fcondfreq , ((�fcond _m fcondfreq)^
¬�freq)

*5 Condition-Requirement After the first time Qcond , ⇤(�m fcond , (�fcond _m fcond))
memos on both sides Qreq (at least once) ⇤(�m fcond freq , ((�freq ^�m fcond)

_m freq)
D(m fcond) m fcond freq)

TABLE I: Syntax and Grammar

Grammar	 for	 implicit	 memory	

Type What to remember? Structured English (S) LTL (M,F)
1 Condition has happened Once Qcond then Qreq sa f e from now on ⇤(m fcond) freq sa f e)^

⇤(�m fcond , (�fcond _m fcond)
After Qcond then Qreq live repeatedly ⇤⇧ (m fcond) freq live)^

⇤(�m fcond , (�fcond _m fcond)
2 Requirement has happened Qreq (at least once) ⇤⇧ (m freq)

⇤(�m freq , (�freq _m freq)
3 Requirement has happened While Qcond then Qreq (at least once) D(fcond) m fcondfreq)

under certain condition ⇤(�m fcond freq , (�freq ^fcond _m freq))
4 Memo is set on Q1 After/once Q1 then Qreq until Q2 D(m f1f2) freq)

and reset on Q2 ⇤(�m f1f2 , ((�f1 _m f1f2)^¬�f2)
*1 ’Only’+cond Only once Qcond then Qreq sa f e from now on LTL in Type 1 +

Only after Qcond then Qreq live repeatedly ⇤((¬�m fcond)) (¬�freq))
*2 requirement + ’only once’ Eventually Qreq live only once LTL in Type 2 + ⇤(m freq) (¬�freq))
*3 requirement under condition If Qcond then eventually Qreq live only once LTL in Type 3 + ⇤(m fcond freq) ¬�freq)

+ ’only once’ If Qcond then Qreq sa f e only once
*4 Memo is self-reset when After each time Qcond , D(m fcondfreq) freq)

the requirement is met Qreq (at least once) ⇤(�m fcondfreq , ((�fcond _m fcondfreq)^
¬�freq)

*5 Condition-Requirement After the first time Qcond , ⇤(�m fcond , (�fcond _m fcond))
memos on both sides Qreq (at least once) ⇤(�m fcond freq , ((�freq ^�m fcond)

_m freq)
D(m fcond) m fcond freq)

TABLE I: Syntax and Grammar

(a) Original transition (b) Forgetfulness

Fig. 1: Forgetfulness with continuous execution

IV. STRUCTURED ENGLISH WITH IMPLICIT MEMORY

This section describes the additional constructs added to
the structured English grammar for automatically generating
and using implicit memory propositions. The new grammar
affords users the expressive power to imply the use of several
kinds of memory propositions, based on which the robot
is constrained to remember events in the history of both
environment and robot behaviors. The presented constructs
extend the grammar described in [15].

A. Structured English Grammar

The syntax and semantics of the new grammar constructs
are listed in Table I. The constructs are grouped into Types,
labeled by the first column of the table. Types 1-4 define the
four basic types of implicit memory propositions, classified
based on the events remembered. Types *1-*5 introduce
derived memory operations that use the four basic types;
details are described in Section IV-B.

The second column of the table explains the events to
be remembered. Types 1-2 are complementary – Type-1
propositions remember that a condition has been satisfied,
while Type-2 propositions remember that a requirement has

been fulfilled. Type-2 propositions are useful for specifying
non-repeated goals. For example, ⇤⇧ (pregion) will drive the
robot to visit the region infinitely often, while ⇤((�m r),
(m r _�pregion)) ^⇤ ⇧ (m r) will not result in repeated
behavior. Type-3 propositions remember that a requirement
has been fulfilled under a specific condition; this allows
specifying the same requirement for multiple conditions.
Type-4 propositions are like Type-1 propositions, but can be
set back to false by a second condition f2. Note that if both
conditions are true, the corresponding Type-4 proposition
will be set to false.

The third column in the table lists the admissible structured
English grammar corresponding to each type of memory.
The symbol Q represents structured English phrases of the
form,“you are activating action”, “visit region”, etc, that
conform to the grammar described in [15]. The composition
of multiple phrases connected by “and/or” is also acceptable.
Furthermore, this work extends the admissible form of Q to
include perfect tense phrases such as “you have sensed/acti-
vated/visited sensor/action”, which correspond to the events
remembered by Type-1 and Type-4 propositions. Note that
in Types 2 and 3, the phrase “at least once” is optional
if following “visit/go to”, and “visit pregion” is translated
into ⇤((�m r), (m r_�pregion))^⇤ ⇧ (m r) in contrast
with the definition in [15]; the new grammar for repeatedly
visiting a region is “Repeatedly visit/go to region”.

The fourth column lists the equivalent LTL formula for
each sentence in the previous column. The symbol f is a
Boolean formula over sensor, action and region propositions.
The structured English phrase Qname corresponds to the
LTL formula fname. The symbol D can represent both ⇤
and ⇤ ⇤. Note that Type-1 propositions impose different
grammatical constraints on safety and liveness requirements
to reduce the ambiguity of the structured English. The other

Type What to remember? Structured English (S) LTL (M,F)
1 Condition has happened Once Qcond then Qreq sa f e from now on ⇤(m fcond) freq sa f e)^

⇤(�m fcond , (�fcond _m fcond)
After Qcond then Qreq live repeatedly ⇤⇧ (m fcond) freq live)^

⇤(�m fcond , (�fcond _m fcond)
2 Requirement has happened Qreq (at least once) ⇤⇧ (m freq)

⇤(�m freq , (�freq _m freq)
3 Requirement has happened While Qcond then Qreq (at least once) D(fcond) m fcondfreq)

under certain condition ⇤(�m fcond freq , (�freq ^fcond _m freq))
4 Memo is set on Q1 After/once Q1 then Qreq until Q2 D(m f1f2) freq)

and reset on Q2 ⇤(�m f1f2 , ((�f1 _m f1f2)^¬�f2)
*1 ’Only’+cond Only once Qcond then Qreq sa f e from now on LTL in Type 1 +

Only after Qcond then Qreq live repeatedly ⇤((¬�m fcond)) (¬�freq))
*2 requirement + ’only once’ Eventually Qreq live only once LTL in Type 2 + ⇤(m freq) (¬�freq))
*3 requirement under condition If Qcond then eventually Qreq live only once LTL in Type 3 + ⇤(m fcond freq) ¬�freq)

+ ’only once’ If Qcond then Qreq sa f e only once
*4 Memo is self-reset when After each time Qcond , D(m fcondfreq) freq)

the requirement is met Qreq (at least once) ⇤(�m fcondfreq , ((�fcond _m fcondfreq)^
¬�freq)

*5 Condition-Requirement After the first time Qcond , ⇤(�m fcond , (�fcond _m fcond))
memos on both sides Qreq (at least once) ⇤(�m fcond freq , ((�freq ^�m fcond)

_m freq)
D(m fcond) m fcond freq)

TABLE I: Syntax and Grammar

(a) Original transition (b) Forgetfulness

Fig. 1: Forgetfulness with continuous execution

IV. STRUCTURED ENGLISH WITH IMPLICIT MEMORY

This section describes the additional constructs added to
the structured English grammar for automatically generating
and using implicit memory propositions. The new grammar
affords users the expressive power to imply the use of several
kinds of memory propositions, based on which the robot
is constrained to remember events in the history of both
environment and robot behaviors. The presented constructs
extend the grammar described in [15].

A. Structured English Grammar

The syntax and semantics of the new grammar constructs
are listed in Table I. The constructs are grouped into Types,
labeled by the first column of the table. Types 1-4 define the
four basic types of implicit memory propositions, classified
based on the events remembered. Types *1-*5 introduce
derived memory operations that use the four basic types;
details are described in Section IV-B.

The second column of the table explains the events to
be remembered. Types 1-2 are complementary – Type-1
propositions remember that a condition has been satisfied,
while Type-2 propositions remember that a requirement has

been fulfilled. Type-2 propositions are useful for specifying
non-repeated goals. For example, ⇤⇧ (pregion) will drive the
robot to visit the region infinitely often, while ⇤((�m r),
(m r _�pregion)) ^⇤ ⇧ (m r) will not result in repeated
behavior. Type-3 propositions remember that a requirement
has been fulfilled under a specific condition; this allows
specifying the same requirement for multiple conditions.
Type-4 propositions are like Type-1 propositions, but can be
set back to false by a second condition f2. Note that if both
conditions are true, the corresponding Type-4 proposition
will be set to false.

The third column in the table lists the admissible structured
English grammar corresponding to each type of memory.
The symbol Q represents structured English phrases of the
form,“you are activating action”, “visit region”, etc, that
conform to the grammar described in [15]. The composition
of multiple phrases connected by “and/or” is also acceptable.
Furthermore, this work extends the admissible form of Q to
include perfect tense phrases such as “you have sensed/acti-
vated/visited sensor/action”, which correspond to the events
remembered by Type-1 and Type-4 propositions. Note that
in Types 2 and 3, the phrase “at least once” is optional
if following “visit/go to”, and “visit pregion” is translated
into ⇤((�m r), (m r_�pregion))^⇤ ⇧ (m r) in contrast
with the definition in [15]; the new grammar for repeatedly
visiting a region is “Repeatedly visit/go to region”.

The fourth column lists the equivalent LTL formula for
each sentence in the previous column. The symbol f is a
Boolean formula over sensor, action and region propositions.
The structured English phrase Qname corresponds to the
LTL formula fname. The symbol D can represent both ⇤
and ⇤ ⇤. Note that Type-1 propositions impose different
grammatical constraints on safety and liveness requirements
to reduce the ambiguity of the structured English. The other

Example:	 Robot	 Waiter

•  First	 go	 to	 the	 check-‐in	 desk	

•  Meet	 the	 first	 truck	 at	 the	
loading	 dock,	 but	 ignore	
all	 following	 trucks	

•  When	 customers	 arrive,	 move	 between	 the	 three	
dining	 rooms	 unFl	 accepFng	 an	 order	

•  Each	 Fme	 an	 order	 is	 made,	 go	 to	 the	 kitchen	

Meet	 the	 first	 truck	 at	 the	 loading	 dock,	 but	
ignore	 all	 following	 trucks	

•  Structured	 English:	 	
	

Aier	 the	 first	 Fme	 you	 have	 sensed	 truck,	 go	 to	 loading_dock

•  Grammar:

•  LTL:

Task	 2

j ::= p | ¬j | j _j |�j |⇤j | ⇤j

m order is set on order and never reset

⇤(�m

order

, (�p
order

_m

order

))

If you are activating m order then visit kitchen

⇤ ⇤(morder

) p
kitchen

)

If you are sensing order then visit kitchen

⇤ ⇤(porder

) p
kitchen

)

m f f ⇤(�m f , (�f _m f))

After the first time Q
cond

, Q
req

(at least once)

1

⇤(�m

truck

, (�p
truck

_m

truck

))

^ ⇤(�m

truck dock

, ((�p
dock

^�m

truck

)_m

truck dock

)

^ ⇤ ⇤(mtruck

) m

truck dock

)

j ::= p | ¬j | j _j |�j |⇤j | ⇤j

m order is set on order and never reset

⇤(�m

order

, (�p
order

_m

order

))

If you are activating m order then visit kitchen

⇤ ⇤(morder

) p
kitchen

)

If you are sensing order then visit kitchen

⇤ ⇤(porder

) p
kitchen

)

m f f ⇤(�m f , (�f _m f))

After the first time Q
cond

, Q
req

(at least once)

1

When	 customers	 arrive,	 move	 between	 the	 three	
dining	 rooms	 un9l	 accep9ng	 an	 order.

•  Structured	 English:	
	 Aier	 you	 have	 sensed	 customer	 then	 visit	 all	 dining_rooms	 unFl	
you	 are	 sensing	 order.

•  Grammar:

•  LTL:

Task	 3

After/once Q
1

then Q
req

until Q
2

⇤(�m

truck

, (�p
truck

_m

truck

))

^ ⇤(�m

truck dock

, ((�p
dock

^�m

truck

)_m

truck dock

)

^ ⇤ ⇤(mtruck

) m

truck dock

)

j ::= p | ¬j | j _j |�j |⇤j | ⇤j

m order is set on order and never reset

⇤(�m

order

, (�p
order

_m

order

))

If you are activating m order then visit kitchen

⇤ ⇤(morder

) p
kitchen

)

If you are sensing order then visit kitchen

⇤ ⇤(porder

) p
kitchen

)

m f f ⇤(�m f , (�f _m f))

After the first time Q
cond

, Q
req

(at least once)

1

After/once Q
1

then Q
req

until Q
2

⇤(�m

truck

, (�p
truck

_m

truck

))

^ ⇤(�m

truck dock

, ((�p
dock

^�m

truck

)_m

truck dock

)

^ ⇤ ⇤(mtruck

) m

truck dock

)

⇤(�m

cust no order

, ((�p
cust

_m

cust no order

)^¬�p
order

))

^ ^
i=1,2,3⇤ ⇤(mcust no order

) p
r

i

)

j ::= p | ¬j | j _j |�j |⇤j | ⇤j

m order is set on order and never reset

⇤(�m

order

, (�p
order

_m

order

))

If you are activating m order then visit kitchen

⇤ ⇤(morder

) p
kitchen

)

If you are sensing order then visit kitchen

⇤ ⇤(porder

) p
kitchen

)

m f f ⇤(�m f , (�f _m f))

After the first time Q
cond

, Q
req

(at least once)

1

Complete	 SpecificaFon

l  Go	 to	 check_in_desk.	
l  Aier	 the	 first	 Fme	 you	 have	
sensed	 truck,	 go	 to	
loading_dock.	

l  Group	 dining_rooms	 is	 room1,	
room2,	 room3.	

l  Aier	 you	 have	 sensed	 customer	
then	 visit	 all	 dining_rooms	 unFl	
you	 are	 sensing	 order.	

l  Aier	 each	 Fme	 you	 have	 sensed	
order,	 go	 to	 kitchen.	

Word	 Count:	 44	

New	 Grammar	
• Do	 memo_check_in	 if	 and	 only	 if	 you	 are	 in	
check_in_desk	 or	 you	 were	 acFvaFng	 memo_check_in	

•  Repeatedly	 visit	 memo_check_in	
• Do	 memo_truck	 if	 and	 only	 if	 you	 are	 sensing	 truck	 or	
you	 were	 acFvaFng	 memo_truck	

• Do	 memo_dock	 if	 and	 only	 if	 you	 are	 in	 loading_dock	 or	
you	 were	 acFvaFng	 memo_dock	

•  If	 you	 are	 acFvaFng	 memo_truck	 then	 visit	 memo_dock	 	
• Do	 memo_customer	 if	 and	 only	 if	 (you	 are	 sensing	
customer	 or	 you	 were	 acFvaFng	 memo_customer)	 and	
you	 are	 not	 sensing	 order	

• Group	 dining_rooms	 is	 room1,	 room2,	 room3	
•  If	 you	 are	 acFvaFng	 memo_dock	 then	 visit	 all	
dining_rooms	

• Do	 memo_order	 if	 and	 only	 if	 (you	 are	 sensing	 order	 or	
you	 were	 acFvaFng	 memo_order)	 and	 you	 are	 not	 in	
kitchen	

•  If	 you	 are	 acFvaFng	 memo_order	 then	 visit	 kitchen	

Word	 Count:	 121	

Old	 Grammar	

Conclusions	

•  Enriched	 Structured	 English	 grammar	 for	 memory	
•  SpecificaFons	 translate	 to	 LTL	 	
•  AutomaFc	 creaFon	 of	 memory	 proposiFons	

•  Accommodates	 several	 types	 of	 events	
	
•  More	 concise,	 intuiFve	 specificaFons	

Avoiding	 Forge,ulness:	 Structured	
English	 Specifica9ons	 for	 High-‐Level	
Robot	 Control	 with	 Implicit	 Memory	

Vasu	 Raman	 (vraman@cs.cornell.edu)	
Bingxin	 Xu	 (bx38@cornell.edu)	

Hadas	 Kress-‐Gazit	 (hadaskg@cornell.edu)	
Cameron	 Finucane	 (cpf37@cornell.edu)	

	
Cornell	 University	

LTLMoP:	 hop://ltlmop.github.com/	 (GPL)	

9/30/12	

9/30/12	

