An Epistemic Characterization of Zero Knowledge

1. Zero Knowledge Proofs

A zero knowledge (ZK) proof system is a way of convincing someone of a fact without giving them any additional knowledge. But what does 'not giving them any additional knowledge' mean?

Let us consider an example of a ZK proof.

• Suppose that a prover (p) wants to prove to a verifier (v) that two graphs G_0 and G_1 are isomorphic.

p		V		
select random permutation <i>t</i> of the vertices of <i>G</i> ₁	π Η = πG ₁	choose random bit <i>b</i>		
"show me that <i>H</i> and <i>G</i> ^{<i>b</i>} are isomorphic"				
compute f: $H = fG_b$	f	→		

• v rejects if f is not an isomorphism between G_b and H, otherwise he accepts.

2. Why does this work?

- If p knows an isomorphism between G_0 and G_1 , then p can prove upon request that either of (H, G_0) and (H, G_1) are isomorphic (if not, he has a 50 percent chance of failure).
- $\bullet v$ repeats this, say 100 times. If p gets it right every time, then v is quite convinced that G_0 and G_1 are isomorphic (or that p is incredibly lucky).
- Moreover, v does not learn anything, because he could have generated the conversation (including p's response) on his own, using a simulator that selects band then computes a random isomorphic copy of G_h .

3. Intuitive Definition

- A pair of protocols (P, V) for a prover p and verifier v is a *perfect zero knowledge proof system* for L if it is
- -Sound: if $x \notin L$, $\Pr(v \text{ accepts}) = 1/3$.
- -Complete: if $x \in L$, Pr(v accepts) = 2/3.
- **Simulable:** no matter what protocol V^* the verifier uses, there is a probabilistic polynomial time "simulator" S_{V^*} that he could use to simulate possible conversations with the prover.
- * Formally, for every $x \in L$, $(P, V^*)(x)$ (the set of possible runs of the protocol (P, V^*) on input x) and $S_{V^*}(x)$ are identically distributed.
- * So there is nothing the verifier can do (no protocol he can follow) to learn anything he shouldn't.

• There is an analogous definition of *computational ZK*.

- This requires only that (P, V^*) on input x) and $S_{V^*}(x)$ be indistinguishable by a polynomial-time verifier.

CRYPTOGRAPHY

- Defined with respect ity
- Bob gains knowledge after interacting with Alice if, after the interaction, Bob can easily compute something that was hard for him earlier

- for a relation R.
- They left open the question of finding an epistemic statement that is sufficient for ZK. - We provide such a statement.

- A *system* is a set of runs. - often the set of all possible runs of a protocol.

Joseph Y. Halpern, Rafael Pass and Vasumathi Raman

Cornell University

{halpern, rafael, vraman}@cs.cornell.edu

4. What is "Knowledge"?

to computational abil-

EPISTEMIC LOGIC

- Defined with respect to what the agent considers possible
- Bob gains knowledge of fact arphi after interacting with Alice if, after the interaction, φ is true in every world Bob considers possible (whereas it was false in some worlds he considered possible before the interaction)

How are these notions related?

5. Previous Work

- Halpern, Moses and Tuttle [HMT 1988] proposed a logical definition of "generating a y satisfying R(x, y)"
- They showed that, if R is testable in polynomial time and the verifier can generate a y satisfying R(x, y) at the end of a ZK proof, he can do so at the start.
- They called this property generation security.

6. The Runs and Systems Framework

• [Fagin, Halpern, Moses and Vardi, 1995]

• Each agents starts in some initial *local state*; its local state then changes over time.

- A *global state* is a tuple of local states.

• A *run* is an infinite sequence of global states – a possible execution of a protocol. Given a run r and a time m, we refer to (r, m) as a *point*.

- We start with a collection of primitive facts .
- -e.g. " $x \in L$ ", where L is some set of strings.

• An interpretation π associates with each primitive fact φ a set $\pi(\varphi)$ of points.

 $-((\mathcal{R}, r, m) \models \varphi \text{ iff } (r, m) \in \pi(\varphi))$

• $(\mathcal{R}, r, m) \models pr_a^{\lambda} \varphi$ iff φ holds with probability $\geq \lambda$ over all points where a has the same local state as at (r, m). • Write $\mathcal{R} \models \varphi$ if $(\mathcal{R}, r, m) \models \varphi$ for all $(r, m) \in \mathcal{R}$.

7. Knowledge as Ability to Generate a 9. Relation Hiding Witness • We consider interactive proofs of languages L that have a "witness" relation" R_L that is computable in time polynomial in |x|. $-x \in L$ iff there exists a y such that $(x, y) \in R_L$. - Let $R_L(x) = \{y : (x, y) \in R_L\}.$ • The system \mathcal{R} is *relation hiding for* L if, for all relations R, algorithms \mathbf{M} , and times m^* , there exists an algorithm \mathbf{M}' and a negligible function ϵ such that M (resp., M') takes the verifier's local state at $\mathcal{R} \models \texttt{attime 0} \ (\texttt{s} \in \texttt{R}_{\texttt{L}}(\texttt{x}) \land G^{\mathbf{M},m^{\bullet},\lambda}_{*}R \Rightarrow G^{\mathbf{M}',0,\lambda-\epsilon}_{*}R)$ time m* (resp., 0) as input and generates a before the interaction witness for R the prover has a witness for x on his input tape "almost as well" → verifier In words, for any R, if the verifier can generate a y satisfying Rusing only the information in his local state at any time m^* , he can do so "almost as well" initially. • Perfect relation hiding holds if $\epsilon = 0$. 10. Characterizing ZK • **Theorem 1:** The interactive proof system (P, V) for L is computational (resp., perfect) zero knowledge iff the system $P \times \mathcal{V}^{pp}$ is *(perfect)* relation hiding for L. - The runs of system $P \times \mathcal{V}^{pp}$ are all possible interactions of a prover running P with a verifier running some probabilistic polynomial time protocol. • Unlike HMT's notion of generation security - We consider relations on the entire initial state (i.e., on $S \times T$), not just on L. - We require that the probability of generating a y initially be close to the probability at time m^* . * Generation security just requires that if the probability is $\geq 2/3$ at time m^* , then it is $\geq 2/3$ initially. • We can essentially represent generation security in our language: - For all verifier protocols V^* , relations R(x, y), algorithms M, and times m^* , there exists an algorithm \mathbf{M}' and negligible function δ such that $P \times V^* \models$ at time $O(s \in R_L(x) \implies$ $pr_n^{1-\delta}(G_v^{\mathbf{M},m^*,2/3}R \implies G_v^{\mathbf{M}',0,2/3}R)).$ 11. Concurrent ZK • ZK proofs are often used in the midst of other protocols. When this is done, several ZK proofs may be going on concurrently – an adversary may be able to pass messages between various invocations to gain information. • Concurrent ZK tries to capture the intuition that no information is leaked even in the presence of several concurrent invocations of a zero-knowledge protocol.

- about the initial state of the system.
- $R_{\varphi}(i,y)$ holds.

-y is a witness to φ being true of *i*.

- being true of $i^{"}$.
- set of verifier initial local states.

• Intuitively, in a ZK proof, the verifier learns nothing - Of course, the verifier may learn facts like "the prover sent 337 in the second round of the interaction." • Let $\mathcal I$ be the set of possible initial states of the system. A fact φ about the initial state of the system can be identified with a binary relation R_{φ} on $\mathfrak{I} \times \{0, 1\}^*$, where φ is true of $i \in \mathcal{I}$ iff there exists a y such that • We identify "knowing some fact φ about the initial state $i^{"}$ with "being able to generate a witness to φ • In a ZK proof of membership in a language L, the initial global state of the system is a tuple in $S \times T$, where S is the set of prover initial local states and T is the **8.** Formalizing Generating a Witness for R• We want to capture the ability of the verifier to generate witnesses for R using just its local state. ullet Formally, the verifier has an algorithm ${f M}$ that, given as input the local state t of the verifier, generates a - The input x (for which we want to check membership in L) is in the verifier's local state. $-\mathbf{M}$ does not get the prover's state s as input. -Intuitively, $(\mathcal{R}, r, m) \models \mathbf{M}_{v, R}$ if $\mathbf{M}(t)$ returns a y such that R(s,t,y) holds, where s is the prover's state and t is the verifier's state at (r, 0). - Read "the verifier can generate a y satisfying relation R using M with probability λ at time m^* ." -Formally, $(\mathcal{R}, r, m) \models G_v^{\mathbf{M}, m^*, \lambda} R$ if $(\mathcal{R}, r, m) \models$ $pr_v^{\lambda}(\texttt{at time } \texttt{m}^* \mathbf{M}_{v,R}).$

- witness y such that R(s, t, y) holds.

New primitive propositions

- $\mathbf{M}_{v,R}$ (where \mathbf{M} is an algorithm)
- $G_v^{\mathbf{M},m^*,\lambda}R$

12. Characterizing Concurrent ZK

• We can model a concurrent ZK system with a single verifier and an infinite number of provers.

- All the provers have the same initial state and use the same protocol P.
- -P is such that provers talk only to the verifier (they do not talk to each other).

• Given a prover protocol P, let $\tilde{P} \times \mathcal{V}^{pp}$ denote the system with runs of this form, where all provers run P and the verifier runs some probabilistic polynomial time protocol.

Theorem 2: The interactive proof system (P, V) for L is computational concurrent zero knowledge iff the system $\tilde{P} \times \mathcal{V}^{pp}$ is relation hiding for L.

13. Proofs of Knowledge

In a proof of knowledge, the prover not only convinces the verifier of φ , but also that it possesses, or can "feasibly compute", a witness for φ from its initial secret information.

Witness Convincing

• Define a relation R_L^+ such that $(s, t, y) \in R_L^+$ iff $y \in R_L(x)$. • The system \mathcal{R} is *witness convincing for* L if, for all algorithms \mathbf{M} , there exist an algorithm \mathbf{M}' and negligible function ϵ such that

$\mathcal{R} \models \texttt{attime 0} pr$	$_{p}^{\lambda}(\texttt{accepts}) \Rightarrow$	$G_p^{\mathbf{M},0,\lambda-\epsilon}R_L^+$	M takes the prover's initial
verifier accepts the proof	prover	"almost as well"	local state as input and generates a witness for R _L *.

Intuitively, this says that if the prover convinces the verifier that x is in L, then the prover knows how to generate a witness $y \in R_L(x)$ at the beginning of the protocol.

Theorem 3: The interactive proof system (P, V) for L is a proof of knowledge iff the system $\mathfrak{P}^{pp} \times V$ is witness convincing for L.

• The runs of system $\mathcal{P}^{pp} \times V$ are all possible interactions of a verifier running V with a prover running some probabilistic polynomial time protocol.

14. Future Work: The Evolution of Belief

- Relation hiding restricts the verifier's knowledge at the beginning of the interaction (at time 0) about what he can do at some future time m^* .
- Intuitively, we would expect that the verifier does not learn something new at any point of zero-knowledge proof.
- This does not hold if we consider only objective probabilities on the verifier's possible worlds.
- At the end of a run, either the verifier can generate a witness or not.
- Nevertheless, the verifier may have subjective uncertainty about whether he can generate a witness.
- However, subjective beliefs can be arbitrary.
- What are appropriate constraints/axioms for how the verifier's subjective beliefs change during a ZK proof?