An Epistemic Characterization of Zero Knowledge

Joseph Y. Halpern, Rafael Pass and Vasumathi Raman

‘ 1. Zero Knowledge Proofs I

A zero knowledge (ZK) proof system is a way of convinc-
ing someone of a fact without giving them any additional
knowledge. But what does ‘not giving them any addi-
tional knowledge’ mean?

Let us consider an example of a ZK proof.

e Suppose that a prover (p) wants to prove to a veri
fier (v) that two graphs Gy and (G are isomorphic.

Cornell University

{halpern, rafael, vraman}@cs.cornell.edu

‘ 4. What is "Knowledge"'? I

CRYPTOGRAPHY

e Defined with respect
to computational abil-

EPISTEMIC LOGIC

e Defined with respect
to what the agent
ity considers possible

e Bob gains knowledge
after interacting with
Alice if, after the in-
teraction, Bob can

e Bob gains knowledge
of fact ¢ after inter-
acting with Alice if,

7. Knowledge as Ability to Generate a
Witness

e Intuitively, in a ZK proof, the verifier learns nothing
about the initial state of the system.

— Of course, the verifier may learn facts like "the prover
sent 337 in the second round of the interaction."

e Let J be the set of possible initial states of the sys-

‘ 9. Relation Hiding I

® \We consider interactive proofs of languages L that have a "witness

relation" Ry, that is computable in time polynomial in |z]|.
—x € L iff there exists a y such that (x,y) € R;.
—Let Rp(x) ={y: (z,y) € R.}.
e The system R is relation hiding for L if, for all rela-

tions R, algorithms M, and times m™, there exists an
algorithm M’ and a negligible function € such that

‘ 12. Characterizing Concurrent ZK I

e \We can model a concurrent ZK system with a single
verifier and an infinite number of provers.

— All the provers have the same initial state and use
the same protocol P.

— P is such that provers talk only to the verifier (they
do not talk to each other).

e Given a prover protocol P, let P x VPP denote the
system with runs of this form, where all provers run

after the interaction,
© I1s true In every

/\ M (resp., M') takes the

, . - A rMm* Ap . ~M 0 A-¢ verifier's local state at
R = at time 0 (s € Ry(x) A G, R=> G, ~“R) FIE T (R, M

P and the verifier runs some probabilistic polynomial
time protocol.

easily compute some- tem. A fact © about the initial state of the system can

p v

select random permutation

of the vertices of G, H=16G
- 1

] choose random bit b

“show me that H and G, are isomorphic”

compute f: H = fG, f

e v rejects if f is not an isomorphism between (G, and H, otherwise
he accepts.

‘ 2. Why does this work? I

e If p knows an isomorphism between G and (1, then
p can prove upon request that either of (H, G() and
(H,G) are isomorphic (if not, he has a 50 percent
chance of failure).

e v repeats this, say 100 times. If p gets it right every
time, then v is quite convinced that GGy and Gy are
isomorphic (or that p is incredibly lucky).

e Moreover, v does not learn anything, because he could
have generated the conversation (including p's re-
sponse) on his own, using a simulator that selects b
and then computes a random isomorphic copy of G,

3. Intuitive Definition

e A pair of protocols (P, V') for a prover p and verifier v
Is a perfect zero knowledge proof system for L if it is

—Sound: if x € L, Pr(v accepts) = 1/3.

— Complete: if z € L, Pr(v accepts) = 2/3.

— Simulable: no matter what protocol V* the verifier
uses, there is a probabilistic polynomial time "simu-
lator" Sy« that he could use to simulate possible

conversations with the prover.

« Formally, for every x € L, (P,V*)(x) (the set of possible
runs of the protocol (P,V*) on input z) and Sy+(x) are
identically distributed.

* So there is nothing the verifier can do (no protocol he can
follow) to learn anything he shouldn't.

e There is an analogous definition of computational ZK.

— This requires only that (P,V*) on input x) and Sy+(z) be
indistinguishable by a polynomial-time verifier.

thing that was hard
for him earlier

world Bob considers
possible (whereas it
was false in some
worlds he considered
possible before the in-
teraction)

How are these notions related?

‘ 5. Previous Work I

e Halpern, Moses and Tuttle [HMT 1988] proposed a
logical definition of "generating a y satisfying R(x,y)"
for a relation R.

— They showed that, if R is testable in polynomial time and the

verifier can generate a y satisfying R(x,y) at the end of a ZK
proof, he can do so at the start.

— They called this property generation security.

e They left open the question of finding an epistemic
statement that is sufficient for ZK.

— We provide such a statement.

‘ 6. The Runs and Systems Framework I

e [Fagin, Halpern, Moses and Vardi, 1995

e Each agents starts in some initial local state; its local
state then changes over time.

— A global state is a tuple of local states.

e A run is an infinite sequence of global states — a possi-
ble execution of a protocol. Given a run r and a time
m, we refer to (r,m) as a point.

e A system is a set of runs.
— often the set of all possible runs of a protocol.
e \We start with a collection of primitive facts .
—e.g. "v € L", where L is some set of strings.

e An interpretation 7 associates with each primitive fact
¢ a set m((p) of points.

—((R,r,m) = @ iff (r,m) € 7(p))
o (R,r,m) |= priy iff ¢ holds with probability > A over
all points where a has the same local state as at (r, m).

e Write R = ¢ if (R,r,m) = ¢ for all (r,m) € R.

be identified with a binary relation R, on J x {0,1}%, betore the A L& " inputand generates 3
the prover has a witness for x

where @ is true of ¢ € J iff there exists a y such that
Ry(7,y) holds.

— 1 is a witness to ¢ being true of .

e We identify "knowing some fact ¢ about the initial
state ¢" with "being able to generate a witness to ¢
being true of 7".

e In a ZK proof of membership in a language L, the ini-
tial global state of the system is a tuple in S X T', where
S is the set of prover initial local states and 7' is the
set of verifier initial local states.

‘ 8. Formalizing Generating a Witness for R I

e \We want to capture the ability of the verifier to gener-
ate witnesses for R using just its local state.

e Formally, the verifier has an algorithm M that, given
as input the local state ¢ of the verifier, generates a
witness y such that R(s,t,y) holds.

— The input z (for which we want to check membership
in L) is in the verifier's local state.

— M does not get the prover's state s as input.

New primitive propositions
e M, g (where M is an algorithm)

— Intuitively, (R,r,m) = M, g if M(t) returns a y
such that R(s,t,y) holds, where s is the prover's
state and t is the verifier's state at (7, 0).

o G%/I,m ,)\R

— Read "the verifier can generate a y satisfying relation
R using M with probability A\ at time m™."

—Formally, (R,r,m) | G}}/I’m*’AR if (R,r,m) |
pr(at time m* M, R).

on his input tape
“almost as well”
verifier

In words, for any R, if the verifier can generate a y satisfying R
using only the information in his local state at any time m®, he
can do so "almost as well" initially.

e Perfect relation hiding holds if ¢ = 0.

10. Characterizing ZK I

e Theorem 1: The interactive proof system (P, V') for
L is computational (resp., perfect) zero knowledge iff
the system P x VPP is (perfect) relation hiding for L.
— The runs of system P x VPP are all possible interactions of

a prover running P with a verifier running some probabilistic
polynomial time protocol.

e Unlike HMT's notion of generation security
— We consider relations on the entire initial state (i.e., on S xT),
not just on L.

— We require that the probability of generating a y initially be
close to the probability at time m™.

« Generation security just requires that if the probability is

> 2/3 at time m*, then it is > 2/3 initially.
e We can essentially represent generation security in our language:
— For all verifier protocols V*, relations R(x,y), algorithms M,

and times m*, there exists an algorithm M’ and negligible func-
tion § such that P x V* = at time O(s € Rj(x) =

prisf( @R — GYORRY),

‘ 11. Concurrent ZK I

e /K proofs are often used in the midst of other protocols. When
this is done, several ZK proofs may be going on concurrently — an
adversary may be able to pass messages between various invoca-
tions to gain information.

e Concurrent ZK tries to capture the intuition that no in-
formation is leaked even in the presence of several con-
current invocations of a zero-knowledge protocol.

p1 %

p2 > > v
I _

Pp; ——

Theorem 2: The interactive proof system (P, V') for L
is computational concurrent zero knowledge iff the
system P x VPP is relation hiding for L.

‘ 13. Proofs of Knowledge I

In a proof of knowledge, the prover not only convinces the verifier
of ¢, but also that it possesses, or can "feasibly compute", a
witness for o from its initial secret information.

Witness Convincing
e Define a relation R, such that (s,t,y) € R} iffy € Ry(x).

e The system R is witness convincing for L if, for all algorithms M,
there exist an algorithm M’ and negligible function € such that

R |= at time O p?‘;(accepts) = Ggm M takes the prover’s initial

| l local state as input and
v ~— prover “almost as well” generates a withess for R *.

verifier accepts the proof

Intuitively, this says that if the prover convinces the verifier that
x is in L, then the prover knows how to generate a witness
y € Ry(x) at the beginning of the protocol.

Theorem 3: The interactive proof system (P, V') for L
is a proof of knowledge iff the system PPP x V is
witness convincing for L.

e The runs of system PPP x V are all possible interactions of a veri-
fier running V" with a prover running some probabilistic polynomial
time protocol.

‘ 14. Future Work: The Evolution of Belief I

e Relation hiding restricts the verifier's knowledge at the
beginning of the interaction (at time 0) about what
he can do at some future time m™.

e Intuitively, we would expect that the verifier does not
learn something new at any point of zero-knowledge
proof.

e This does not hold if we consider only objective prob-
abilities on the verifier's possible worlds.

— At the end of a run, either the verifier can generate a witness
or not.

e Nevertheless, the verifier may have subjective uncer-
tainty about whether he can generate a witness.

e However, subjective beliefs can be arbitrary.

— What are appropriate constraints/axioms for how the verifier's
subjective beliefs change during a ZK proof?



