
An Epistemic Characterization of Zero Knowledge
Joseph Y. Halpern, Rafael Pass and Vasumathi Raman

Cornell University
{halpern, rafael, vraman}@cs.cornell.edu

1. Zero Knowledge Proofs

A zero knowledge (ZK) proof system is a way of convinc-
ing someone of a fact without giving them any additional
knowledge. But what does ‘not giving them any addi-
tional knowledge’ mean?

Let us consider an example of a ZK proof.

• Suppose that a prover (p) wants to prove to a veri-
fier (v) that two graphs G0 and G1 are isomorphic.

• v rejects if f is not an isomorphism between Gb and H, otherwise
he accepts.

2. Why does this work?

• If p knows an isomorphism between G0 and G1, then
p can prove upon request that either of (H, G0) and
(H, G1) are isomorphic (if not, he has a 50 percent
chance of failure).

• v repeats this, say 100 times. If p gets it right every
time, then v is quite convinced that G0 and G1 are
isomorphic (or that p is incredibly lucky).

• Moreover, v does not learn anything, because he could
have generated the conversation (including p’s re-
sponse) on his own, using a simulator that selects b
and then computes a random isomorphic copy of Gb.

3. Intuitive Definition

• A pair of protocols (P, V) for a prover p and verifier v
is a perfect zero knowledge proof system for L if it is

– Sound: if x 6∈ L, Pr(v accepts) = 1/3.

– Complete: if x ∈ L, Pr(v accepts) = 2/3.

– Simulable: no matter what protocol V ∗ the verifier
uses, there is a probabilistic polynomial time "simu-
lator" SV ∗ that he could use to simulate possible
conversations with the prover.
∗ Formally, for every x ∈ L, (P, V ∗)(x) (the set of possible

runs of the protocol (P, V ∗) on input x) and SV ∗(x) are
identically distributed.

∗ So there is nothing the verifier can do (no protocol he can
follow) to learn anything he shouldn’t.

• There is an analogous definition of computational ZK.

– This requires only that (P, V ∗) on input x) and SV ∗(x) be
indistinguishable by a polynomial-time verifier.

4. What is "Knowledge"?

CRYPTOGRAPHY

• Defined with respect
to computational abil-
ity

• Bob gains knowledge
after interacting with
Alice if, after the in-
teraction, Bob can
easily compute some-
thing that was hard
for him earlier

EPISTEMIC LOGIC

• Defined with respect
to what the agent
considers possible

• Bob gains knowledge
of fact ϕ after inter-
acting with Alice if,
after the interaction,
ϕ is true in every
world Bob considers
possible (whereas it
was false in some
worlds he considered
possible before the in-
teraction)

How are these notions related?

5. Previous Work

• Halpern, Moses and Tuttle [HMT 1988] proposed a
logical definition of "generating a y satisfying R(x, y)"
for a relation R.

– They showed that, if R is testable in polynomial time and the
verifier can generate a y satisfying R(x, y) at the end of a ZK
proof, he can do so at the start.

– They called this property generation security.

• They left open the question of finding an epistemic
statement that is sufficient for ZK.

– We provide such a statement.

6. The Runs and Systems Framework

• [Fagin, Halpern, Moses and Vardi, 1995]

• Each agents starts in some initial local state; its local
state then changes over time.

– A global state is a tuple of local states.

• A run is an infinite sequence of global states – a possi-
ble execution of a protocol. Given a run r and a time
m, we refer to (r, m) as a point.

• A system is a set of runs.

– often the set of all possible runs of a protocol.

• We start with a collection of primitive facts .

– e.g. "x ∈ L", where L is some set of strings.

• An interpretation π associates with each primitive fact
ϕ a set π(ϕ) of points.

– ((R, r, m) |= ϕ iff (r, m) ∈ π(ϕ))

• (R, r, m) |= prλ
aϕ iff ϕ holds with probability ≥ λ over

all points where a has the same local state as at (r, m).

• Write R |= ϕ if (R, r, m) |= ϕ for all (r, m) ∈ R.

7. Knowledge as Ability to Generate a

Witness

• Intuitively, in a ZK proof, the verifier learns nothing
about the initial state of the system.

– Of course, the verifier may learn facts like "the prover
sent 337 in the second round of the interaction."

• Let I be the set of possible initial states of the sys-
tem. A fact ϕ about the initial state of the system can
be identified with a binary relation Rϕ on I× {0, 1}∗,
where ϕ is true of i ∈ I iff there exists a y such that
Rϕ(i, y) holds.

– y is a witness to ϕ being true of i.

• We identify "knowing some fact ϕ about the initial
state i" with "being able to generate a witness to ϕ
being true of i".

• In a ZK proof of membership in a language L, the ini-
tial global state of the system is a tuple in S×T , where
S is the set of prover initial local states and T is the
set of verifier initial local states.

8. Formalizing Generating a Witness for R

• We want to capture the ability of the verifier to gener-
ate witnesses for R using just its local state.

• Formally, the verifier has an algorithm M that, given
as input the local state t of the verifier, generates a
witness y such that R(s, t, y) holds.

– The input x (for which we want to check membership
in L) is in the verifier’s local state.

– M does not get the prover’s state s as input.

New primitive propositions

•Mv,R (where M is an algorithm)

– Intuitively, (R, r, m) |= Mv,R if M(t) returns a y
such that R(s, t, y) holds, where s is the prover’s
state and t is the verifier’s state at (r, 0).

•G
M,m∗,λ
v R

– Read "the verifier can generate a y satisfying relation
R using M with probability λ at time m∗."

– Formally, (R, r, m) |= G
M,m∗,λ
v R if (R, r, m) |=

prλ
v (at time m∗ Mv,R).

9. Relation Hiding

• We consider interactive proofs of languages L that have a "witness

relation" RL that is computable in time polynomial in |x|.

– x ∈ L iff there exists a y such that (x, y) ∈ RL.

– Let RL(x) = {y : (x, y) ∈ RL}.

• The system R is relation hiding for L if, for all rela-
tions R, algorithms M, and times m∗, there exists an
algorithm M

′ and a negligible function ǫ such that

In words, for any R, if the verifier can generate a y satisfying R
using only the information in his local state at any time m∗, he
can do so "almost as well" initially.

• Perfect relation hiding holds if ǫ = 0.

10. Characterizing ZK

• Theorem 1: The interactive proof system (P, V) for
L is computational (resp., perfect) zero knowledge iff
the system P × Vpp is (perfect) relation hiding for L.

– The runs of system P × Vpp are all possible interactions of
a prover running P with a verifier running some probabilistic
polynomial time protocol.

• Unlike HMT’s notion of generation security

– We consider relations on the entire initial state (i.e., on S×T),
not just on L.

– We require that the probability of generating a y initially be
close to the probability at time m∗.

∗ Generation security just requires that if the probability is
≥ 2/3 at time m∗, then it is ≥ 2/3 initially.

• We can essentially represent generation security in our language:

– For all verifier protocols V ∗, relations R(x, y), algorithms M,
and times m∗, there exists an algorithm M

′ and negligible func-
tion δ such that P × V ∗ |= at time 0(s ∈ RL(x) =⇒

pr1−δ
p (G

M,m∗,2/3
v R =⇒ G

M
′,0,2/3

v R)).

11. Concurrent ZK

• ZK proofs are often used in the midst of other protocols. When
this is done, several ZK proofs may be going on concurrently – an
adversary may be able to pass messages between various invoca-
tions to gain information.

• Concurrent ZK tries to capture the intuition that no in-
formation is leaked even in the presence of several con-
current invocations of a zero-knowledge protocol.

12. Characterizing Concurrent ZK

• We can model a concurrent ZK system with a single
verifier and an infinite number of provers.

– All the provers have the same initial state and use
the same protocol P .

– P is such that provers talk only to the verifier (they
do not talk to each other).

• Given a prover protocol P , let P̃ × Vpp denote the
system with runs of this form, where all provers run
P and the verifier runs some probabilistic polynomial
time protocol.

Theorem 2: The interactive proof system (P, V) for L
is computational concurrent zero knowledge iff the
system P̃ × Vpp is relation hiding for L.

13. Proofs of Knowledge

In a proof of knowledge, the prover not only convinces the verifier
of ϕ, but also that it possesses, or can "feasibly compute", a
witness for ϕ from its initial secret information.

Witness Convincing

• Define a relation R+

L such that (s, t, y) ∈ R+

L iff y ∈ RL(x).

• The system R is witness convincing for L if, for all algorithms M,
there exist an algorithm M

′ and negligible function ǫ such that

Intuitively, this says that if the prover convinces the verifier that
x is in L, then the prover knows how to generate a witness
y ∈ RL(x) at the beginning of the protocol.

Theorem 3: The interactive proof system (P, V) for L
is a proof of knowledge iff the system Ppp × V is
witness convincing for L.
• The runs of system Ppp×V are all possible interactions of a veri-

fier running V with a prover running some probabilistic polynomial
time protocol.

14. Future Work: The Evolution of Belief

• Relation hiding restricts the verifier’s knowledge at the
beginning of the interaction (at time 0) about what
he can do at some future time m∗.

• Intuitively, we would expect that the verifier does not
learn something new at any point of zero-knowledge
proof.

• This does not hold if we consider only objective prob-
abilities on the verifier’s possible worlds.
– At the end of a run, either the verifier can generate a witness

or not.

• Nevertheless, the verifier may have subjective uncer-
tainty about whether he can generate a witness.

• However, subjective beliefs can be arbitrary.
– What are appropriate constraints/axioms for how the verifier’s

subjective beliefs change during a ZK proof?

