An Epistemic Characterization of Zero Knowledge

Joseph Y. Halpern, Rafael Pass, and Vasumathi Raman
Computer Science Department
Cornell University
Ithaca, NY, 14853, U.S.A.
e-mail: {halpern, rafael, vramagi@cs.cornell.edu

March 16, 2009

Abstract

Halpern, Moses and Tuttle presented a definition of interactive proofs using a notion they called
practical knowledgebut left open the question of finding an epistemic formula that completely
characterizes zero knowledge [Goldwasser, Micali, and Rackoff 1989]; that is, a formula that holds
iff a proof is zero knowledge. We present such a formula, and show that it does characterize zero
knowledge. Moreover, we show that variants of the formula characterize variants of zero knowledge
such agoncurrent zero knowledg®work, Naor, and Sahai 2004] amloofs of knowledgf-eige,

Fiat, and Shamir 1987; Tompa and Woll 1987].

1 Introduction

The notions ofnteractive proofandzero knowledg#ere introduced by Goldwasser, Micali, and Rack-

off [1989], and have been the subject of extensive research ever since. Informally, an interactive proof is
a two-party conversation in which a “prover” tries to convince a polynomial-time “verifier” of the truth

of a facty (whereyp typically has the forme € L, wherez is a string andl is alanguageor set of

strings) through a sequence interactions. An interactive proof is said to be zero knowledge if, whenever
 holds, the verifier has an algorithm to generate on its own the conversations it could have had with the
prover during an interactive proof qf (according to the correct distribution of possible conversations).
Intuitively, the verifier does not learn anything from talking to the prover (other {jathat it could

not have learned on its own by generating the conversations itself. Consequently, the only knowledge
gained by the verifier during an interactive proof is thais true. The notion of “knowledge” used

in zero knowledge is based on having an algorithm to generate the transcript of possible conversations
with the prover; the zero-knowledge condition places a restriction on what the verifier is able to generate
after interacting with the prover (in terms of what he could generate before). The relationship between
this ability to generate and logic-based notions of knowledge is not immediately obvious. Having a
logic-based characterization of zero knowledge would enhance our understanding and perhaps allow
us to apply model-checking tools to test whether proofs are in fact zero knowledge. However, getting
such a characterization is not easy. Since both probability and the computational power of the prover
and verifier play crucial roles in the definition of zero knowledge, it is clear that the standard notion of
knowledge (truth in all possible worlds) will not suffice.

Halpern, Moses and Tuttle [1988] (HMT from now on) were the first to study the relationship
between knowledge and being able to generate. They presented a definition of interactive proofs using
a notion they calleghractical knowledgeThey proved that, with high probability, the verifier in a zero-
knowledge proof ofr € L practically knows a fact) at the end of the proof iff it practically knows
x € L = 1 at the beginning of the proof; they call this propekiyowledge securitylntuitively, this
captures the idea that zero knowledge proofs do not “leak” knowledge of facts other than those that
follow from = € L. They also define a notion of knowing how to generatg satisfying a relation
R(z,y), and prove that, with high probability, if the verifier in a zero-knowledge proof ef L knows
how to generate g satisfying R(z,y) at the end of the proof, then he knows how to do so at the
beginning as well; they called this propedgneration security This captures the intuition that at the
end of a zero-knowledge proof, the verifier cannot do anything that it could not do at the beginning.

HMT left open the question of finding an epistemic formula that completely characterizes zero
knowledge; that is, a formula that holds iff a proof is zero knowledge [Goldwasser, Micali, and Rackoff
1989]. In this paper we present a strengthening of knowledge security and generation security that we
call relation hiding which we show does characterize zero knowledge. Moreover, we show that variants
of relation hiding characterize variants of zero knowledge suawoasurrent zero knowledg®work,

Naor, and Sahai 2004] antoofs of knowledgf-eige, Fiat, and Shamir 1987; Tompa and Woll 1987].

2 Background

In this section, we review the relevant background both in cryptography (interactive proof systems and
zero knowledge) and epistemic logic (specifically, modeling knowledge and probability using the runs

and systems framework [Fagin, Halpern, Moses, and Vardi 1995; Halpern and Tuttle 1993]). In addition,
we introduce some of the notation that will be needed for our new results.

2.1 Interactive Proof Systems

An interactive protocols an ordered paifP, V') of probabilistic Turing machinesP andV share a
read-only input tape; each has a private one-way, read-only random tape; each has a private work tape;
and P and V' share a pair of one-way communication tapes, one ffono V' being write-only for

P and read-only fol/, and the other fronV' to P being write-only forV and read-only forP. An
executiorof the protocol P, V') is defined as follows. At the beginning, the input tape is initialized with
some common input, each random tape is initialized with an infinite sequence of random bits, each
work tape may or may not be initialized with an initial string, and the communication tapes are initially
blank. The execution then proceeds in a sequence of rounds. During any given\rofinstl performs

some internal computation making use of its work tape and other readable tapes, and then sends a
message t@ by writing on its write-only communication tap&, then performs a similar computation.
Either P or V' may halt the interaction at any time by entering a halt st&feaccepts or rejects the
interaction by entering an accepting or rejecting halt state, respectively, in which case we refer to the
resulting execution as either an accepting or rejecting execution. The running tifharaf V" during

an execution of P, V') is the number of steps taken ByandV respectively, during the execution. We
assume thaV’ is a probabilistic Turing machine running in time polynomial|in, and hence that it

can perform only probabilistic, polynomial-time computations during each round. For now we make no
assumptions about the running time/of

Denote by(P(s) < V(t))(z) the random variable that takes two random stripgs, € {0, 1}*
as input and outputs an execution(df, V') in which the prover's work tape is initialized with the
verifier's work tape is initialized with, the input tape is initialized with, andp,, p,, are the contents of
the prover and verifier's respective random tapes. We can thimkasfthe common input, and efand
t as containing the prover and verifier's auxiliary information as well as the common input respectively.
Let z; denote the common input contained in the verifier's state; is defined analogously). We
sometimes write: rather thane, or z;, whens and/ort are clear from context. Letccepts,[(P(s) <
V(t))(x)] be the random variable that takes two infinite random stripgs, € {0,1}° as input, and
outputs true iff the verifier enters an accept state at the end of the execution of the pfgtdcpivhere
pp andp, are the contents of the prover and verifier's respective random tapes, and false otherwise.

Informally, an interactive protocdlP, V') is an interactive proof system for a languagé, when
run on inputz (and possibly some auxiliary inputs inandt), after the protocol, if the prover and
verifier are both “good’—that is, the prover usesand the verifier use¥ —the verifier is almost
always convinced that € L. Moreover, no matter what protocol the prover uses, the verifier will
hardly ever be convinced thate L if it is not. The “almost always” and “hardly ever” are formalized
in terms of negligible functions. A function: N — [0, 1] is negligibleif for every positive integek
there exists amy € N such that for allv > ng, e(n) < nik that is, e is eventually smaller than any
inverse polynomial. Finally, lePry;, denote the uniform probability over strings (0, 1}>°)*. For
ease of notation, we typically omit the subscriptvhen it does not play a significant role or is clear
from context, writing jusPr;;.

Definition 1 An interactive protoco(P, V) is aninteractive proof system for languagef the follow-
ing conditions are satisfied:

e CompletenessThere exists a negligible functiersuch that for sufficiently large:| and for every
sandt, if x € L then

Pridccepts,[(P(s) < V(1))(@)] 2 1 - e(|z])-

e SoundnessThere exists a negligible functiohsuch that for sufficiently largez|, for every pro-
tocol P* for the provers, andt, if x ¢ L then

Pr{Accepts,[(P*(s) = V(1) ()] < 6(1a).

The completeness condition is a guarantee to both the good prover and the good verifier that if
x € L, then with overwhelming probability the good prover will be able to convince the good verifier
thatz € L. The soundness condition is a guarantee to the good verifier that i, then the probability
that an arbitrary (possibly malicious) prover is able to convince the good verifiet thdl is very low.
The probability here is taken over the runs of the protocol where the the verifier’s initial information is
s, the prover’s initial information ig, andz is the common input. The probability is generated by the
random coin flips of the prover and verifier (which in turn determine what happens in the run); we do
not assume a probability on ¢, or x.

2.2 Zero Knowledge

To make the notion of zero knowledge precise, we need a few preliminary definitions. We consider
zero-knowledge proofs of languagkghat have avitness relationR,, whereR;, is a set of pairgz, y)

such thatr € L iff there exists ay such that(z,y) € Ryr; let Rp(x) = {y : (z,y) € Rr}. Note

that all languages in the complexity cla8&P have this property. Defin€iew,[(P(s) < V(t))(z)]

to be the random variable that, on inpyt p,, describes the verifiergiewin the executior(P(s) <
V(t))(x)(p1, p2), that is, the verifier’s initial auxiliary input, the sequence of messages received and
read thus far by the verifier, and the sequence of coin flips used thus far.

The intuition behind zero knowledge is that the reason the verifier learns nothing from an interaction
is that he can simulate it. The simulation is carried out by a probabilistic Turing machine. It should
be possible to carry out the simulation no matter what algorithm the verifier uses (since we hope to
show that, no matter what algorithm the verifier uses, he gains no information beyond the fact that
x € L), so we have a simulatdfy - for every algorithmV/* of the verifier. The simulato6y« takes
the verifier's initial state as an input and generates verifier views of the conversations péffitit
zero knowledgethe distribution of the views created I8+ given inputt (which is all the verifier
sees) is identical to the actual distribution of the verifier's views generaté&fy) «— V(¢))(z). With
statistical zero knowledgé¢he two distributions are just required to be close. Finally, wittnputational
zero knowledgeno PPT probabilistic polynomial timealgorithm can distinguish the distributions. We
capture the notion of “distinguishing” here by using a PPT distinguigherThe distinguisher gets
as input verifier views generated 8y« and by the actual conversation, and possibly some auxiliary
input as well (see below), and must output either 1 or 0, depending on whether it believes the view
came fromSy - or the actual conversation. Notice that the input to the simulafas accessible by the
verifier, so the verifier could, given his initial state and the common input, run the simulator instead of
interacting with the prover. The distinguisher tries to identify whether the verifier talked to the prover

or ran the simulator on his own. If no distinguisher is able to tell the difference, then the verifier might
as well not have interacted with the prover but run the simulator instead; we say that the interaction was
“zero-knowledge” in this case because the verifier saw nothing during the interaction that he could not
simulate.

We allow the distinguisher to have additional information in the form of auxiliary inputs (in addition
to the view it is trying to distinguish). This allows the distinguisher to have information that the verifier
never sees, such as information about the prover’s state, since such information could be helpful in
identifying views from the interaction and telling them apart from those produced by the verifier alone.
Allowing the distinguisher to get such auxiliary inputs strengthens the zero knowledge requirement in
that, no matter what additional information the distinguisher might have, he cannot tell apart views of
the interaction from simulated ones.

Definition 2 An interactive proof systerf, ') for L is said to becomputational zero knowledgg

for every PPT verifier protocdl’*, there is a probabilistic Turing maching, - that takes as input the
common input and verifier's auxiliary information contained:jmuns in expected time polynomial in
|z¢|, and outputs a view for the verifier such that for every PPT (probabilistic polynomial time) Turing
machineD that takes as input a view of the verifier and an auxiliary input {0, 1}*, there exists a
negligible functiore such that for allx € L, s € Ry (x),t € {0,1}*, 2 € {0,1}",

[Pro[D(Sv+(t), 2) = 1] = Pro[D(View,[(P(s) < V*(1))(2)], 2) = 1]| < €(|2]).

2.3 The Runs and Systems Framework

Our analysis of interactive proof systems is carried outims and systenfsamework [Fagin, Halpern,
Moses, and Vardi 1995]. The systems we consider consist of a (possibly infinite) set of communicating
agents. Agents share a global clock that starts at @irmad proceeds in discrete increments of one.
Computation in the system proceeds in rounds, raundsting from timem — 1 to timem. During a
round, each agent first performs some (possibly probabilistic) local computation, then sends messages
to other agents, and then receives all messages sent to him during that round. Each agents starts in some
initial local state its local state then changes over time. The agent’s local state abtitned consists
of the time on the global clock, the agent’s initial information (if any), the history of messages the agent
has received from other agents and read, and the history of coin flips uggdb® stateis a tuple of
local states, one for each agent and one for nature, which keeps track of information about the system
not known to any of the agents. We think of each agent as following a protocol that specifies what the
agent should do in every local state. An infinite execution of such a protocol (an infinite sequence of
global states) is called mun. We define asystento be a set of such runs, often the set of all possible
runs of a particular protocol. Given a runand a timem, we refer to(r,m) as apoint, and we say
that (r,m) is a point of the syster®R if » € R. We denote the global state at the paintm) (that
is, the global state at time in r) by »(m), and the local state of ageatin r(m) by r,(m). Let
Ka(r,m) = {(r',m') : ro(m) = r’(m')}; Ku(r,m) can be thought of as the set of points that
considers possible &t, m), because he has the same local state at all of them. Since the agent’s local
state at timen consists of the time on the global clock, any point thabnsiders possible &t, m) is
also at timem, sokC,(r,m) = {(r',m) : ro(m) = rl,(m)}.

In interactive proof systems, we assume that there are two agents—a peowta verifier. Both
agents have a common input (typically a string {0, 1}*); we denote by-.(0) the common input in

4

runr. We also assume that the prover and verifier agents have initial local stg@s= s € {0,1}*
andr,(0) = ¢t € {0,1}*, respectively; both of which contair.(0), and include a description of the
protocol that the agent is following.Additionally, we assume that nature’s state at all-tinesudes

a tuple(py, pi,, p"), Wherepy, and pj, are the prover’'s and verifier's random tapes, respectively, in run

r, andp” is an additional tape whose role is explained in Section 3. An interactive protécbl)
generates a system. The runs of the system correspond to possible execufiBng pf Following

HMT, we denote byP x V' the system consisting of all possible execution$@fl) and by P x VPP

the system consisting of the union of the systdig V* for all probabilistic, polynomial-time (PPT)
protocolsV*L, PPP x V is defined analogously. More generally, we Rtx V denote the system
consisting of the union of the systenisx V' for all prover protocolsP € P and verifier protocols

V € V. Since we need to reason about probability, we augment a system teigdtadoilistic system

by adding a functiorP R, for each agent that associates with each peint:) a probabilityPR ,(r, m)

on points for agent, whose support is contained k&, (r, m). In many cases of interest, we can think

of PR,(r,m) as arising from conditioning an initial probability on runs on the agent’s current local
state, to give a probability on points. There are subtleties to doing this though. We often do not have
a probability on the set of all executions of a protocol. For example, as we observed in the case of
interactive proofs, we do not want to assume a probability on the auxiliary inputs or the common input
contained ins andt. The only source of probability is the random coin flips.

Halpern and Tuttle [1993] suggested a formalization of this intuition. Suppose that we partition
the runs ofR into cells, with a probability on each cell. For example, in the case of interactive proof
systems, we could partition the runs into sits;, according to the inputsandt. The random coin flips
of the prover and verifier protocols and the random string in nature’s state then give us a well-defined
probability on the runs irR; ;. We can then defin®R,(r, m) by conditioning in the following sense:
Given a seftS of points, [etR(S) = {r : (r,m) € S for somem}. Let R(r) be the cell of the partition
of R that includesr, and letPry,) be the probability on the cell. [fl is an arbitrary set of points,
definePR,(r,m)(A) = Prr)(R(AN Ky (r,m)) | R(Ka(r,m)) NR(r)). (We assume for simplicity
that all the relevant sets are measurable and®hgt,) (R(Kq(r,m)) N R(r)) # 0.) Note that for
synchronous systems (such as those we deal with), &inee m) is a set of timen points, the support
of PR,(r,m) is a subset of timen points (i.e.,PR,(r,m)(A) = 0 unlessA includes some timen
points, since otherwisd N K,(r, m) =). Intuitively, we associate a set of points with the set of runs
going through it, and then define the probabil®R ,(r, m), which isa’s distribution on points at the
point (r, m), by conditioning the probability on runs defined @a cell on the runs going through the
set/C,(r,m) (i.e. the runs: considers possible given his information at pdintn)). A probabilistic
system isstandardif it is generated from probabilities on runs in this way.

In systems where the runs are generated by randomized algorithms, the cells are typically taken so
as to factor out all the “nonprobabilistic” or “nondeterministic” choices. In particular, we do this for the
systemP x V, so that we partition the runs into cefR ;, according to the inputsandt, as suggested
above, and take the probability on the runs in the cell to be determined solely by the random inputs
of the prover and verifiep, andp,, and the random string contained in nature’s state. Thus, we can
identify the probability oriR; ; with the uniform distributiorPr,. Note also thaf<, (r, 0) = {(+’,0) :

!Note that we distinguislp andv, the “prover” and the “verifier” agents respectively, from the protocols that they are
running. In the systen® x V, the verifier is always running the same prototoin all runs. In the systerf® x VPP, the
verifier may be running different protocols in different runs.

"(0) = 7,(0)}, SOR(r) C K,(r,0). Therefore

Pry(r,0)(A) = Prrg)(R(AN Ky(|
= Prg)(R(A) NR(Ky(r,0
Prr iy (R(A) NR(Ky(r,0)
Prg((R(1))
= Prr)(R(4) NR(r))
= Pry,(R(A) NR(r)).

The probabilities on the systef x V are defined by the probabilities on each individual sysiemV

for P € P andV € V. Since the prover and verifier inputs contain a description of their respective
protocols, we can still partition the runs of the system into cells accordirgatal¢, and identify the
probability Prp v,y With Pry,.

2.4 Reasoning About Systems

To reason about systems, we assume that we have a collection of primitive facts such as “the value of
the variablex is a prime number” (where is the common input in the run), or“€ L”, where L

is some set of strings. Each primitive faetis identified with a setr(y) of points, interpreted as the

set of points at whiclp holds. A point(r,m) in a systenR satisfiesy, denotedR,r,m) = ¢, if

(r,m) € w(¢). We extend this collection of primitive facts to a logical language by closing under the
usual boolean connectives, the linear temporal logic opefataperatorsat time m* for each time

m*, the epistemic operatoi&,,, one for each agent, and probability operators of the form for)

each agent and real numbek. The definitions of all these operators is standard:

e (R,r,m) | Opiff (R,r,m’) = ¢ for somem’ > m.

o (R,r,m) = K,piff (R,r',m') = pforall (r',m") € Kq(r,m). (Intuitively, agenta knowsy
if ¢ is true at all the worlds that agemtconsiders possible.)

o (R,r,m) |= at time m* ¢ iff (R,r,m*) = .
o (R,r,m) [= pro(e) iff PRa(r,m)([¢]) > A, where[g] = {(+',m) : (R,r',m) = ¢}.

We write R = ¢ if (R,r,m) = ¢ for all points(r,m) in R.

3 Characterizing Zero Knowledge Using Relation Hiding

We identify “knowing something about the initial state of the system” with “being able to generate a
witness for some relation on the initial state”.

For example, if the languagefrom which the common input is taken is the set of all Hamiltonian
graphs, then we can define a relat®isuch thatR(s, ¢, y) holds iff x; = x; = x andy is a Hamiltonian
cycle in graphz. Recall that a Hamiltonian cycle in a graph is a path that goes through every vertex
exactly once, and starts and ends at the same vertex; a Hamiltonian graph is a graph with a Hamiltonian
cycle. We can think of a Hamiltonian cycleas a withess to a graphbeing Hamiltonian. We allow the

6

relation R to depend or andt in addition tox because this allows us to describe the possibility of the
verifier learning (via the interaction) facts about the prover’s initial state (which he does not have access
to). This allows us to account for provers with auxiliary information on their work tapes. For example,
R(s,t,y) could be defined to hold iff the prover has Hamiltonian patim its work tape (in its initial
states).

We are therefore interested in relatioRson S x T' x {0,1}*, whereS is the set of prover ini-
tial states and’ is the set of verifier initial states. We want a formal way to capture verifier's abil-
ity to generate such witnesses f&r We do this by using an algorithm/ that takes as input the
verifier's local state and is supposed to returngasuch thatR(s,¢,y) holds. The algorithm\/ es-
sentially “decodes” the local state into a potential withessRorMore generally, we want to allow
the decoding procedurk/ to depend on the protoc®™ of the verifier. We do this by using a func-
tion M : 7TM — T M; intuitively M(V*) is the decoding procedure for the verifier proto&ol.

To reason about this in the language, we add a primitive proposhgr: to the language, where
(R,r,m) = My g if R(rp(0),r,(0), M(V*)(r,(m))(p")) holds, and/* is the verifier protocol in run

r andp” is the extra random tape that is part of nature’s local state inrytinis makes the output of
M(V*) in runr deterministic (although/ is a probabilistic TM). For any constant let Gh""™ R
read “the verifier can generatg aatisfyingR? usingM with probability A at timem*” be an abbreviation

of pr)(at time m* M,). We can generalize this to a formu@"™ * R which considers functions

A whose meaning may depend on components of the state, such as the verifier's protocol and the length
of the common input; we leave the straightforward semantic details to the réé%é’f‘.*’AR, read “the

prover can generateasatisfying R usingM with probability A at timem™*”, is defined analogously.

Finally, we add the primitive propositia# € R.(x) to the language, and defii®, r,m) = s € R.(x)

if r.(0) € L andr,(0) € Rr(r:(0)).

We now show how to use the formu@™™ *R to capture the intuitions underlying zero-knowledge
proofs. Intuitively, we want to say that if the verifier can generatesatisfying a relatior? after the
interaction, he could also do so before the interaction (i.e., without interacting with the prover at all).
However, this is not quite true; a verifier can learp satisfying R during the course of an interaction,
but only in a negligibly small fraction of the possible conversations. We want to capture the fact that
the probability of the verifier being able to generate the witness correctly at a final point in the system is
only negligibly different from the probability he can do so at the corresponding initial point (in a perfect
zero knowledge system, the probabilities are exactly the same). Note that when the Turing machine
used by the verifier in a particular rungenerates g, the verifier may not know whetherin fact is
a witness; that is, the verifier may not know whetti&r, ¢,) in fact holds. Nevertheless, we want it
to be the case that if the verifier can use some algorittinthat generates a witnegswith a certain
probability after interacting with the prover, then the verifier can generate a witnegth the same
probability without the interaction. This lets us account for leaks in knowledge from the interaction that
the verifier may not be aware of. For example, a computationally bounded verifier may have a Hamil-
tonian cycley in graphz as part of his local state, but no way of knowing thas in fact a Hamiltonian
cycle. We want to say that the verifier knows how to generate a Hamiltonian cycle if this is the case
(even if he does not know that he can do so), since there is a way for the verifier to extract a Hamiltonian
cycle from his local state.

We now define relation hiding, which says that if the verifier initially knows that he can, at some
future time during the interaction with the prover, generate a witness for some refatarthe initial
state with some probability, then he knows that he can generate a witnessdbtime 0, that is,

before the interaction, with almost the same probability. We allow the generating machines used by
the verifier (both after and before the interaction) to rumxpectedolynomial time in the common

input and verifier view. Allowing them to only run in (strict) polynomial time, would certainly also

be a reasonable choice, but this would result in a notion that is stronger than the traditional notion of
zero-knowledgé. Let EPPT be the set of all expected probabilistic polynomial time algorithms (i.e.,
algorithms for which there exists a polynomjakuch that the expected running time on inpus at
mostp(|z|)).

Definition 3 The systerfR is relation hiding forL if, for every polynomial-time relatio® on S x T' x
{0,1}* and functionM : 7 M — EPPT, there exist functionM’ : 7TM — EPPT,e: TM x N —
[0, 1] such that for every Turing machifé&*, ¢(V*, -) is a negligible function, and for evefy< A <1
and timem*,

R = at time 0 (s € Rp(x) A Gle}/I’m*’)\R N GB/I/’O’)‘%R)'

In the definition above, given a protoc®l* for the verifier, the Turing machinesI(V*) and
M'(V*) take as input a verifier stateand run in expected time polynomial jm;|. Note thatR;,
in the definition of relation hiding is still the standard witness relationfpand is therefore a binary
relation (whereas the general relatioRswve consider for relation hiding have arity 3). We allow the
meaning ofe to depend on the verifier’'s protocbl* since, intuitively, different verifier protocols may
result in different amounts of knowledge being leaked. If we had not allevtediepend on the verifier
protocolV*, we would need a single negligible function that bounded the “leakage” of information for
all verifiers inVPP. We cannot prove that such a function exists with the traditional definition of zero
knowledge. Similarly, we must alloiI’ to depend on the verifier's protocol, everMf does not. In-
tuitively, M’ must be able to do at time O whi can do at timen*, so it must know something about
what happened between times 0 antl The verifier's protocol serves to provide this information, since
for each verifier protocol*, the definition of zero knowledge ensures the existence of a simuator
that can be used to mimic the interaction before time The relation-hiding property captures the
requirement that if the verifier can eventually generate an arbiffahe can do so almost as well (i.e.
with negligibly lower probability of correctness) initially. We now use this property to characterize zero
knowledge.

Theorem 1 The interactive proof systefi, V') for L is computational zero knowledge iff the system
P x VPP is relation hiding forL.

Theorem 1 says that {fP, V') is a computational zero-knowledge proof system, then for any PPT
verifier and relationR, if the verifier can eventually generate a witnessirhe can do so almost as
well initially. Note that in this characterization of zero knowledge, the prover does not need to know the
verifier's protocol to know that the statement holds. An intuition for the proof of Theorem 1 follows:
the details (as well as all other proofs) can be found in AppendixA.

For the “if” direction, suppose thatP, V') is a computational zero knowledge system.Vif is
the verifier protocol in rum € P x VPP, then there is a simulator machisg - that produces verifier
views that no distinguisheld can distinguish from views during possible interactions with the prover,
no matter what auxiliary inpub has. We show that if the verifier has an algorithd(1*) that takes

2In fact, it would result in a notion callestrict polynomial-time zero knowled@@oldreich 2001].

as input his view at a final point of the interaction and generatgsatisfying the relatior, then he
can generate suchyabefore the interaction by running the simulating machsfe at the initial point
to get a final view, and then runnidd (V*) on this view to generatg. We can therefore construct the
functionM’ usingM and Sy -.

For the “only if” direction, given an arbitrary protoc®™, we construct a relatiok such that
the verifier has an algorithm for generating witnessesHaafter the interaction. Sinc® x VPP is
relation hiding forL, the verifier has an algorithm for generating withessesHat initial points of
the interaction. We then use this generating machine to implement a simSlatathat fools any
distinguisher.

Our epistemic characterization of zero knowledge is in the spirit of HMT’s notion of generation
security, but there are some significant differences. For one thing, generation security is only a necessary
condition for zero knowledge; we give a formula that is both necessary and sufficient. Thus, intuitively,
our formula must be more stringent than that of HMT. One way in which our condition is more stringent
is that HMT consider only witnesses for a string beinglinso that they consider binary relations on
{0,1}* x {0,1}*. By way of contrast, we consider relations 8nx 7' x {0,1}*. Perhaps even more
important, generation security requires only that if the probability of generating a witness is at least
2/3 at the end of the protocol, then it is at le@g8 at the beginning; we require that the probability of
generating a witness initially be close to the probability at tinie whatever that probability is.

We can essentially represent generation security in our language as follows:

For every polynomial-time relatio® on {0,1}* x {0,1}* and functionM : 7TM —
EPPT, there exist functiondl’ : TM — EPPT andd : T M x N — [0, 1] such that for
every Turing machin&™, 6(V*, -) is a negligible function, and

P xV*|=at time 0(s € Rp(z) = pr}f‘s(G}}/I’m*g/:}R — GM02/3Ry),

4 Characterizing Variants of Zero Knowledge

We can use the ideas of relation hiding to characterize variants of zero knowledge. In this section, we
show how to characterize two well-known variants: concurrent zero knowledge and proofs of knowl-
edge.

4.1 Concurrent Zero Knowledge

So far, we have considered only single executions of an interactive proof system. However, zero-
knowledge proofs are often used in the midst of other protocols. Moreover, when this is done, several
zero-knowledge proofs may be going on concurrently. An adversary may be able to pass messages
between various invocations of zero-knowledge proofs to gain information. Dwork, Naor, and Sahai
[2004] presented a definition abncurrentzero knowledge that tries to capture the intuition that no in-
formation is leaked even in the presence of several concurrent invocations of a zero-knowledge protocol.
They consider a probabilistic polynomial-time verifier that can talk to many independent provers (all us-
ing the same protocol) concurrently. The verifier can interleave messages to and from different provers
as desired. We say that artended verifier protocas a protocol for the verifier where the verifier can
interact with arbitrarily many provers concurrently, rather than just one prover. (Since we are interested

9

in verifiers that run in polynomial time, for each extended verifier protdcthere is a polynomiagy
such that the verifier can interact with onjy (|z|) provers on input:. This means that the verifier's
view also contains messages to and from at mpstz|) provers.) Denote byP(s) < V (t))(x) the
random variable that takes an infinite tuple of infinite random strifgs)icn, p») @s input and outputs
an execution where all the provers are running protdeoetith auxiliary inputs on common input:
and the verifier is running the extended verifier protdéakith auxiliary inputt and common input,
prover: has the infinite string; on its random tape, and the verifier hason its random tape.

With this background, we can define a concurrent definition of zero knowledge in exactly the same
way as zero knowledge (Definition 2), except that we now consider extended verifier protocols; we omit
the details here.

We can model a concurrent zero-knowledge system in the runs and systems framework as follows.
We now consider systems with an infinite number of agents: a vetifemd an infinite number of
proverspy, pa, All agents have common input(0) in runr. As before, the provers and the verifier
have initial local states. We will be interested in systems where all the provers have the same initial
state and use the same protocol. Moreover, this will be a protocol where a prover talks only to the
verifier, so the provers do not talk to each other. This captures the fact that the verifier can now talk to
multiple provers running the same protocol, but the provers themselves cannot interact with each other
(they are independent). Again, the initial local states of the provers and the verifier all caritgin
Additionally, we assume that nature’s state at all timesncludes a tuplepy, , ..., oy, p", P*, V"),
wherep;,. is proverp;'s random tape angy is the verifier's random tape in run p" is an additional
tape as beforeP* is the protocol used by all the provers, a¥id is the verifier's protocol. Note that
the provers’ random tapes are all independent to ensure that their actions are not correlated. Given a set
P of prover protocols and of verifier protocols, lef? x V denote the system with runs of this form,
where the provers’ protocol is iR and the verifier's protocol iv. If P = {P}, we write P x V. We
define the probability ofP x V' as before, partitioning the runs into cells according to the protocol used
and the inputs. Thus, we can identify the probabilityy; with the uniform distributiorPry;__.

Theorem 2 The interactive proof syste(®, V) for L is computational concurrent zero knowledge iff
the systenP x VPP is relation hiding forL.

The proof is almost identical to that of Theorem 1. The formal details are in Appendix A.

4.2 Proofs of Knowledge

Loosely speaking, an interactive proof is a proof of knowledge if the prover not only convinces the
verifier of the validity of some statement, but also that it possesses, or can “feasibly compute”, a withess
for the statement proved (intuitively, using the secret information in its initial state). For instance, rather
than merely convincing the verifier that a graph is Hamiltonian, the prover convinces the verifier that
he knows a Hamiltonian cycle in the graph. We show how this notion can be formalized using our
logic. There are a number of ways of formalizing proofs of knowledge; see, for example, [Bellare and
Goldreich 1992; Feige, Fiat, and Shamir 1987; Feige and Shamir 1990; Tompa and Woll 1987]. We
give here a definition that is essentially that of Feige and Shamir [1990].

Definition 4 An interactive proof syste(iP, V) for a languagel with witness relatiornRz;, is aproof of
knowledgeif, for every PPT prover protocaP*, there exists a negligible functiarand a probabilistic

10

Turing machineE'p- that takes as input the prover’s stateruns in expected time polynomial jim|,
and outputs a candidate witness fay, such that for alls, ¢ € {0, 1}*,

Pry[{Accepts,[(P(s) < V(1))(2)]}] — Pru[{Ep-(s) € Rr(2)}] < ().

Intuitively, this says that for every provét*, if P* succeeds in convincing the verifigrthatz is in L,

then there is a “knowledge extractor” machifg- that can extract a witness farfrom the prover’s
auxiliary information. We can think of the extractor as demonstrating that the prover really does know
a witness to show that € L, given its auxiliary information irs. We now formalize this definition of
proofs of knowledge using our logic. Letcepts denote the primitive proposition that holds iff the
verifier enters an accept state at the end of the interaction.

Definition 5 The systerR is witness convincing for the languadewith witness relationRy, if there
exist functiondM : TM — EPPT,e: TM x N — |0, 1] such that, for every Turing machirfe,
e(P*,-) is a negligible function, and, forall < \ <1,

R = at time 0 prl’J\(Oaccepts) = GS/I’O’A_ERX,
where(s,t,y) € R} iff v = x5 = x4,y € Rp(x).

This definition says that there exists a functidhsuch thatM (P*) takses a prover statg runs in time
polynomial in|z,|, and can generateasuch that(s, ¢, z,y) € R} wheneverP* makes the verifier
accept in the systerR. This machine can be viewed as a knowledge extractoPformotivating the
following theorem.

Theorem 3 The interactive proof syste(®, V) for L is a proof of knowledge iff the systéiP x V' is
witness convincing foL.

To see why this should be true, note thati, V') is a proof of knowledge and if the verifier accepts
on inputz when interacting withP*, then there exists a knowledge extractor machiie that can
generate a witnesg € Ry (z), and can therefore generateyauch that(s,t,z,y) € R}. For the
converse, as we said above, the macivi@”*) that exists by the definition of witness convincing can
be viewed as a knowledge extractor f8t. Again, the details are in Appendix A.

The difference between Definition 4 and the definition of FS is that, in the FS definition, rather than
allowing a different machin& p« for every prover protocaP*, FS require that there be a single knowl-
edge extractor maching that has oracle access to the prover’s protocol. To capture this difference, we
vary the definition of witness convincing to require thd{P*) for any P* return the same maching
that has oracle access B (and has expected runtime polynomialir, not counting the computation
of P*).

The FFS definition is an earlier variant of the FS definition with a slightly different requirement
on the success probability of the knowledge extractor; in essence, they require only that if the success
probability of P* is non-negligible, then the knowledge extractormlso succeeds with non-negligible
probability. The TW definition considers yet a different requirement on success probability; in essence,
that the probability thaP* succeeds and the extractor fails is negligible. Finally, the difference between
the BG and FS definitions is that in the BG definition, the knowledge extractor has acé¥$s te) and
x but does not directly get access to the auxiliary inpQivhereas in the FS definition the knowledge
extractor gets access ©*, ands). We can easily modify the witness convincing requirement to
capture these differences. The straightforward details are left to the reader.

11

5 Conclusions and Future Work

HMT formalized the notion oknowledge securitgnd showed that a zero-knowledge proof system for

x € L satisfies it: the prover is guaranteed that, with high probability, if the verifier will practically
know (as defined in [Moses 1988]) a factt the end of the proof, he practically knows L = ¢ at

the start. They also formalized the notion of knowing how to generatesisfying any relatiol(z, y)

that is BPP-testable by the verifier, and showed that zero-knowledge proofs also satisfy the analogous
property of generation security (with respect to these relations). Their work left open the question of
whether either of these notions of security characterizes zero knowledge.

We have provided a different definition of what it means for a polynomial-time agent to know how to
generate a string satisfying a relatiorR. Using this definition we provide a logical statement—called
relation hiding—that fully characterizes when an interaction is zero knowledge. We additionally show
that variants of this statement (using the same notion of knowing how to generate) characterize variants
of zero knowledge, including concurrent zero knowledge and proofs of knowledge.

Our notion of relation hiding considers the verifier's knowledge at the beginning of arun (i.e. attime
0); it says that, at time 0, the verifier cannot know that he will be able to generate a witness for a relation
with higher probability in the future than he currently can. We would like to make the stronger claim that
the verifier will neverknow that he can generate a witness satisfying the relation better than he knows
he can at the beginning (or, more accurately, will almost certainly never know this, since there is always
a negligible probability that he will learn something). To do this, we need to talk about the verifier's
knowledge and belief at all points in the system. Consider, for example, a verifier trying to factor a large
number. We would like to allow for the fact that the verifier will, with some small probability, get the
correct answer just by guessing. However, we want to be able to say that if, after interacting with the
prover, the verifier believes that he can guess the factors with non-negligible probability then, except
with very small probability, he already believed that he could guess the factors with almost the same
probability before the interaction. This does not hold if we consider only objective probabilities on the
verifier's possible worlds (that is, probabilities generated by the random coin tosses). At the end of a
run, the verifier can either generate a witness or not. Nevertheless, he may have subjective uncertainty
about whether he can generate a witness.

Subjective beliefs can be arbitrary. Enforcing the requirements above seems to require some ax-
ioms about how a computationally-bounded verifier's beliefs evolve. We are currently considering what
might be appropriate axioms, using Rantala’s “impossible possible-worlds approach” [Rantala 1982] to
capture the verifier's uncertainty due to computational limitations. For example, if the verifier cannot
compute whether a numberis prime, he may consider possible a world where prime and one
where it is not (although one of these worlds is logically impossible). Proving analogues of our theorem
in this setting seems like an interesting challenge, which will lead to a deeper understanding of variants
of zero knowledge.

Acknowledgements

The first and third authors are supported in part by NSF grants ITR-0325453, 11S-0534064, and IIS-
0812045, and by AFOSR grants FA9550-08-1-0438 and FA9550-05-1-0055. The second author is
supported in part by NSF CAREER Award CCF-0746990, AFOSR Award FA9550-08-1-0197, BSF
Grant 2006317 and I3P grant 2006CS-001-0000001-02.

12

A Proofs

A.1 Computational Zero Knowledge

Theorem 1: The interactive proof syste(®,) for L is computational zero knowledge iff the system
P x VPP is relation hiding forL.

Proof. For the “only if” direction, suppose th&,) is a computational zero knowledge system and
that(P x VPP r,0) & GYL™ A R for a polynomial-time relatiod? and functiondM : 7M — EPPT
and\ : TM x N — [0,1]. We want to show that there exist functioM’ : 7M — EPPT and

e : TM x N — [0,1] such that(P x VPP r,0) = GY"**~“R. The intuition behind the proof is as
follows. If (P, V') is zero knowledge, ant* is the verifier protocol in rum, then there is a simulator
machineSy « that produces verifier views that no distinguisti#rcan distinguish from views during
possible interactions with the prover, no matter what auxiliary irdpitas. We show that if the verifier
has an algorithnMI(1V*) that takes as input his view at a final point of the interaction and generates a
satisfying the relatior?, then he can generate such before the interaction by running the simulating
machineSy - at the initial point to get a final view, and then runnikg(V*) on this view to generatg.

We can therefore construct the functid/ usingM and Sy -.

In more detail, we want to ShopP x VPP) |= at time 0 (s € Ry (x) AGYY™ R = GB/I/’O’A_GR).
Thus, we must show that for all runs we have(P x VP, r.0) = (s €Ry(x) A GoP™ R =
GM'O2~¢R). So suppose that (0) € L, 7,(0) € Ry (r.(0)), and({P} x VPP, r,0) = GY'™ *R. By
definition, this means that® x VPP, r.0) |= pr)(at time m* M, g).

Suppose that the verifier rud& in . Since(P x VPP, r,0) = pr)(at time m* M, r), we have

PRy(r,0)({(r",0) : (PxV™*,7',0) |= at time m" My g}, 7,(0) = r,(0),7,(0) = r,(0)}) > A(V*, [r:(0)]).
Recall that we can identifP R, (r, 0)(A) with Pry, (R(A) N R(r)), SO

Pry({r' € (PxV)(r) : (PxV*,7,0) at time m* M, g, 7,(0) = r,,(0),7,(0) = r,(0)}) > A(V*, |r(0)]).

v »'p

By definition of M, g,

Pry[{r" € (P x V)(r) : R(r}(0),7,,(0),7¢(0), M(V*)(r,(m"))) = 1}] = A(V", |rc(0))).
Construct a PPT distinguishér as follows. D takes as input a verifier viewiew, and, as auxiliary
input, the prover’s state D extracts fromview, the verifier's initial state since by perfect recall, the
initial verifier state is contained in any subsequent view and the commondng@iven a random string
p, D runsM(V*) on z, view,,, andp, whereV* is the verifier's protocol (which is part a@j, to gety,
and outputsR(s, t,y). So.D with inputsview, ands accepts iffR(s, t, M(V*)(view,)(p)) = 1 for the
t andz contained in the verifier's view. Thug) with auxiliary inputr,(0) accepts the verifier's view
r(m*) with probability at least(V*, |r.(0)|) (where the probability is taken over the random choices
of D).
Becausg P, V) is a computational zero-knowledge proof systemIoif r.(0) € L andr,(0) €
Ry (r:(0)), then there is an expected PPT Turing machifie and a negligible functiom(V*) such
that.Sy- on inputr, (0) outputs a verifier view such that every distinguisher, and in particular the distin-
guisherD constructed above, accepts this view with probability at Ie&ste)(V*, |r.(0)|) (taken over

13

the random choices @D and .Sy +), no matter what auxiliary information we give it, and in particular
given auxiliary input-, (0). Thus, by the definition oD, we must have

Pry[{r' € (P x V)(r) : R(r}(0),7,(0),7¢(0), M(V*)(Sy«(r},(0)))) = 1] = (A — €)(V", [re(0)])-
DefineM’ : TM — EPPT by takingM'(V*)(t) = M(V*)(Sy+(t)). Note that this definition
suppresses the random choicedf(V*), Sy- andM (V*)—we assume that each of these machines
is given a random tape, and that the random tapeS,efand M (V*) are independent, so that their

outputs are not correlated. Sindg~ and M (V*) are both expected polynomial-time jm|, so is
M'(V*). Note also that

R(rp(0),mu(0), M (V") (ry(0)) (p7)) = 1

R(rp(0), 7 (0), M(VF)(Sv=(re(0), 0 (0)) (p)) (")) = 15
thus,
Pry[R(rp(0),75(0), M/ (V) (ry(0))) = 1] = (A =)(V", [re(0)]).
SoM'(V*) runs in expected time polynomial jm;| and outputs a value such that
(P x VPP 1,0) = pro~¢(at time 0 M, R).

This completes the proof of the “only if” direction.

For the “if” direction, we want to show that for every verifier protodot, there is an EPPT al-
gorithm Sy~ such that for any PPT distinguishé?, there exists a negligible functionsuch that
Vx € L,Vs € Ry (x),t,z € {0,1}*,

[Pro[{D(Sv~(t), 2) = 1}] = Pry[{ D(View, [(P(s) < V(1)) (x)], z) = 1}]] < e(|z]).

The idea behind the proof is as follows. Given an arbitrary protdColwe construct a relatioR such
that the verifier has an algorithm for generating witnessesfafter the interaction. Sinc® x VPP

is relation hiding forL, the verifier has an algorithm for generating witnessesHat initial points
of the interaction. We then use this generating machine to implement a siméi{ataghat fools any
distinguisher.

Recall that the set of possible verifier initial states is the set of all bitstfigs}*. Given an
arbitrary PPT distinguisheD that takes a verifier stateand has runtime bounded BY|x:|), letTp C
{0,1}* be the set of verifier states of the form= ¢'; 1V, D’; z; pp, wheret’ € {0,1}*, =y € L,
'D" € {0,1}* is adescription oD in some canonical way, € {0,1}*, pp € {0,1}*,andN > d(|zy|).
Define a relationR by taking R(s,t,y) = 1iff ¢t € Tp for some distinguisheD, y is a verifier
view and D accepts when given, random stringpp, and auxiliary inputz contained in¢ (otherwise
R(s,t,y) = 0). Note thatR is computable in time polynomial in its inputs, singéis at least the
runtime of D.

DefineM (V™) to be the trivial machine that on inpGt, (m)) outputs the verifier’s view.,(m).
Suppose that there exists a functidrand a setd of runs such that for alt € A, if m; is the final

14

round in runr, then(P x VPP r 0) = GY' AR, SinceP x VPP is relation hiding forL, there exists

a functionM’ : TM — EPPT and a functiore : 7 M x N such that(V*) is negligible and for all
re A, (PxVP r,0) £ s € Ry (x) = GY'O R, DefineSy- by takingSy - (t)(p) = M/(V*)(£)(p).
Suppose, by way of contradiction, that for some distinguidhdehere is a polynomigp such that
for infinitely manyz € L, s € Rp(z), andt € {0,1}*, there is az € {0,1}* such that there ex-
ist functions\; and A; (that may depend on) such thatPry[{D(Sv+(t),z) = 1}] =)\Z(S t),
Pry[{D(View,[(P(s) « V*(t))(2)],z) = 1}] = A5(s,t), and|Aj(s,t) — A3(s,t)| > ——. Con-
sider the seflp 5,. € Tp, whereN is an upper bound on the running time of the verlﬁer protocol
V* and the simulatoSy« for input z;;. The effect of this choice is that, given the verifier's state,
the verifier and simulator cannot access the distinguisher description. TherEfare,[(P(s) <
VE(1)(x) (pp po)] = View[(P(s) < V*()(x)(pp po)] and Sy-(t)(pu) = Sy«(¢')(py). If there
existsz € {0, 1}* such that the distinguishé?, given auxiliary inputz, succeeds in distinguishing the
distributions{View,[(P(s) < V*(t'))(x)]} and{Sy~(t')}, thenD can distinguisi View,[(P(s) <
V*(t))(x)]} and{Sv~«(t)} givenz. By construction oflp s,,., for infinitely manyz € L,s € Ry (x)
andt € Tpg,., there exist functions\j and A5 such thatPry [{D(Sy«(t),z) = 1}] Ai(s,t),
Pry[{D(View,[(P(s) < V*(t))(2)],2) = 1}] = A3(s,t), and|A{(s,) — A3(s,)| > smopy (thez ref
erenced here is containedtin Without loss of generality, we can assume thigts, t) — /\ (s t) > p(lx\)
for infinitely many of the reIevanks s’s, andt’s. To see that this is without Ioss of generality,
note that if \5(s,t) — A\i(s,t) > p(m) for only a finite number oft’s, s’s, andt’s, then it must
be the case thatj(s,t) — \j(s,t) > m for infinitely many z's, s's, andt's. In this case, we
can define a distinguishdp’ that outputs the opposite of what outputs when given the same view
and auxiliary input. Then for infinitely many € L, s, andt, there exists: € {0,1}* such that
Pry[{D/(Sv-(t),2) = 1}] = N (s,1), Pro[{D'(View,[(P(s) = V*(£))(@)],2) = 1}] = X (s.1),
and\% (s, t) — N (s,t) > —t] where\i? =1 — A\ and\f = 1 — \5. We can then proceed with the

p(lz])
rest of the proof using the distinguishBf instead ofD.

Let A denote the set of tuplés;, s, ¢) (withz € L,s € Ry (x),t € Tps,,., v+ = s = x) for which
there exists € {0, 1}* and functions\i, A3 such that

Pru[{D(Sv-(t), 2) = 1}] = Ai (s, 1), Pro[{D(View,[(P(s) < V*(1))(2)],) = 1}] = A3(s,1),
and\3(s,t) — Ai(s,t) > p(‘ - In the systenP x VPP, let A’ = {r € P x V* : (r.(0),r,(0),7,(0)) €
A}. Soforallr € A, Pry[{D(Sy+(rv(0)), 2) = 1}] = A5 (r¢(0),r,(0), r,(0)) (wherez is contained
in rp(0)), Pry[{D(View, [(P(ry(0)) < V*(ry(0)))(re(0))], 2) = 1}] = A3(re(0),7(0), 7(0)), and
A3(7c(0),75(0),74(0)) — Af(rc(0),75(0), 7,(0)) > PO (DE

Soforallr € A', if m? is the final round in rum, then by definition of?, M, andM’,
Pry [R(rp(0),7(0), M(V™)(ry(m;)))] = A5(re(0), 75(0), 75(0)),
Pry[R(rp(0), 74(0), M'(V7)(r4(0)))] = A (7c(0),75(0),74(0)),

and
1

A5(7¢(0),75(0),75(0)) = A (re(0), 7(0), 7o (0)) > p(|re(0)])°

So for any negligible functioa(V*),

Pry[R(rp(0),75(0), M (V*)(ry(0)))] < A5(7e(0),75(0), 74(0)) — e(V*)(|])

15

for all but finitely manyz. By definition ofpry, for all » € A/,
(P x VPP r0) = prﬁg (at time m})M, g

and
(P x VPP 1 0) £ pr{}z_e(at time 0)M/,

for any negligible functior(V*). Also, by definition ofA’, (P x VPP r,0) = s € R.(x), SO

(P x VPP, r,0) = s € Re(x) AGaU " R
and o
(P x VP 7,0) b= Gy "R

for any functione : 7 M x N — [0, 1] such thak(V*) is negligible. This gives us a contradictian.

A.2 Concurrent Zero Knowledge

Theorem 2: The interactive proof syste(®, V') for L is computational concurrent zero knowledge iff
the systenP x VPP is relation hiding forL.

Proof. For the “if” direction, suppose th&f”, V') is a computational concurrent zero knowledge system
and tha{ P x VPP, 1, 0) = GYY™ R for some arbitrary polynomial-time relatidhand some functions
M:TM — EPPT,\: TM x N — [0,1]. We want to show that there exist functiowf : 7 M —
EPPT,e: TM x N — [0,1] such tha(P x VPP, r,0) = GY 02~ R.

Let V* be the extended verifier protocol in rune P x VPP, let 2 be the common input, and
let gy (|x|) be an upper bound on the runtime 6f on common inpute. Recall that the verifier’s
local state at timen > 0 consists of the time on the global clock, his initial informatigii0) (which
contains the common input(0)), the history of messages he has received from other agents and read,
and the history of coin flips he has used. Since the verifier's running time is boundgéd @y.(0)|),
no matter how many messages he receives in roeunte can read at most - (|r.(0)|) of them. So
his local state (and his view) at any time > 0 can contain at mosty«(|r.(0)|) messages, coming
from at mostgy -« (|r.(0)|) provers (indexed without loss of generality by2, . . ., gy« (|7(0)])). So for
every runr in P x VPP, the verifier interacts with a subsetf, po, . . . s Pgy=(Ire(0)))- BY the definition
of concurrent zero knowledge, there is a simulator macKinesuch thatSy - produces verifier views
that are indistinguishable by any distinguisher (with any auxiliary input) from views during possible
interactions off’* with up togy-(|z|) instances of? on common inputz|. The proof thatP x VPP is
relation hiding now proceeds exactly as in Theorem 1.

For the “only if” direction, we want to show that for every verifier proto&6i, there is an EPPT
algorithm Sy« such that for any PPT distinguish®rwith any auxiliary input, there exists a negligible
functione such thatvz € L,Vs € Rr(x),t,z € {0,1}*,

[Pro[{D(Sv~(t), 2) = 1}] = Pry[{ D(View, [(P(s) < V*(1))(x)], 2) = 1}]] < e(|z]).

This proof proceeds exactly as in Theorem 1, so we omit further detailsihere.

16

A.3 Proofs of Knowledge

Theorem 3: The interactive proof syste®, V') is a proof of knowledge knowledge iff the system
PPP x V is witness convincing fof..

Proof. For the “if” direction of the proof, suppose th@P, V') is an interactive proof system fdr that
is a proof of knowledge. It is sufficient to show that the systBinx V is witness convincing fol.
for every prover protocoP*. By the definition of proofs of knowledge, for every prover proto£6|
there is a negligible functioap- and a probabilistic Turing machinép- that takes as input the prover's
states, runs in expected time polynomial jm,|, and outputs a candidate witness fgrsuch that for all
x,s,t € {0,1}%,

Pry[{ Accepts,[(P*(s) = V())(@)]}] = Pru[{Ep-(s) € R(2)}] < ep-(

Thus,

Pry[{Accepts,[(P*(s) < V(1))(@)]}] = Prol{(s,t, Ep-(s)) € Ri }] < ep+(|zl), (1)

where the first probabilityr;; is taken over the random choices made by the prover and verifier proto-
cols, while the second is taken over the random choicdsref

DefineM : 7TM — EPPT ande : T MxN — |0, 1] by takingM(P*) = Ep- ande(P*,-) = ep=.
Suppose that there exists sotng A < 1 and some run such tha{P*x{V'},r,0) = pr;‘(Oaccepts).
Recall thatPr p-,y) can be identified with the uniform distributidhry, over triples of random
strings. SAPry [{ Accepts,[(P*(rp(0)) < V(ry(0)))(rc(0))]}] > A. By (1), we have

Pry [{(rp(0),70(0), Ep«(rp(0))) € RE}] = A — (P, [rc(0)]).

Moreover, we havéP*x V,r,0) = K,(pr)~“(at time 0 M, z)), and sq P*x V,r,0) = Gg/LOA—eR.
This completes the “if” direction of the proof.

For the “only if” direction, let(P, V') be an interactive proof system fdr such that the system
PPP x V' is witness convincing for.. Thus, there exist functionM : 7TM — EPPT ande :
TM x N — [0,1] such that for every PPP* € PPP, ¢(P*,-) is a negligible function, and for every
0< A<,

PPP x V k= at time 0 pri,‘((}accepts) = G;}/I’O’A%Rz. (2)

Let Ep- = M(P*) for every P* € PPP. Given a prover protocaP*, defineAp- so that for all

x,s,t €{0,1}*, Pry[{Accepts, [(P*(s) < V(t))(x)]}] = Ap=(s,t). Since the probability distribution
Prpppyy () ONPPP X {V'}(r) can be identified wittPr;,, it follows that

(PP x {V},r,0) k= pry(Oaccepts)
forallr € P* x V. By (2), forallr € P* x V, we have
(PP x {V},7,0) |= GRH Ry

that is, (PP* x V,r,0) |= K,(pr)~“(at time 0 M rt))- We can view(s, t, M(P*)(s)) € R} asa
random variable; the probability that it is 1 is just the probability t&tP*)(s) returns ay such that

17

(z,y) € Ry, taken over the random choices®f(P*). SinceM(P*) = Ep-, we have that, for all
x,s,t €{0,1}*,
Pry[{(s, , M(P")(s)) € R }] = Ap+(s,1) — e(P", |z]).

That is,
Pry[{Accepts,[(P*(s) < V(1))(@)]}] — Pru[{Ep-(s) € R(z)}] < (P, |z])

forall z,s,t € {0,1}*. It follows that(P, V') is a proof of knowledgen

References

Bellare, M. and O. Goldreich (1992). A modular approach to the design and analysis of authentication
and key exchange protocols.Rioc. CRYPTO '92pp. 390—-420.

Dwork, C., M. Naor, and A. Sahai (2004). Concurrent zero-knowledgetnal of the ACM 5(6),
851-898.

Fagin, R., J. Y. Halpern, Y. Moses, and M. Y. Vardi (1998¢asoning About Knowledgéambridge,
Mass.: MIT Press. A slightly revised paperback version was published in 2003.

Feige, U., A. Fiat, and A. Shamir (1987). Zero knowledge proofs of identityerbt. 19th ACM
Symposium on Theory of Computipg. 210-217.

Feige, U. and A. Shamir (1990). Witness indistinguishability and witness hiding protocols. In
Proc. 31st IEEE Symposium on Foundations of Computer Scippcéd16—426.

Goldreich, O. (2001)Foundations of Cryptography, Vol. Cambridge University Press.

Goldwasser, S., S. Micali, and C. Rackoff (1989). The knowledge complexity of interactive proof
systemsSIAM Journal on Computing 18), 186—208.

Halpern, J. Y., Y. Moses, and M. R. Tuttle (1988). A knowledge-based analysis of zero knowledge.
In Proc. 20th ACM Symposium on Theory of Compytpg 132-147.

Halpern, J. Y. and M. R. Tuttle (1993). Knowledge, probability, and adversalesnal of the
ACM 4Q4), 917-962.

Moses, Y. (1988). Resource-bounded knowledg@rbt. Second Conference on Theoretical Aspects
of Reasoning about Knowledgsp. 261-276.

Rantala, V. (1982). Impossible worlds semantics and logical omniscié&uta.Philosophica Fen-
nica 35 18-24.

Tompa, M. and H. Woll (1987). Random self-reducibility and zero knowledge interactive proofs of
possession of information. Rroc. 28th IEEE Symposium on Foundations of Computer Science
pp. 472-482.

18

