
Collision-Free Reactive Mission and Motion
Planning for Multi-Robot Systems

Jonathan A. DeCastro, Javier Alonso-Mora, Vasumathi Raman, Daniela Rus and
Hadas Kress-Gazit

Abstract This paper describes a holistic method for automatically synthesizing
controllers for a team of robots operating in an environment shared with other
agents. The proposed approach builds on recent advances in Reactive Mission Plan-
ning using Linear Temporal Logic, and Local Motion Planning using convex opti-
mization. A local planner enforces the dynamic constraints of the robot and guaran-
tees collision avoidance in 2D and 3D workspaces. A reactive mission planner takes
a high-level specification that captures complex motion sequencing, and generates a
correct-by-construction controller guaranteed to achieve the specified behavior and
be reactive to sensor events. If there is no controller that fulfills the specification be-
cause of possible deadlock in the the local planner, a minimal set of human-readable
assumptions is generated as a certificate of the conditions on deadlock where the
task is guaranteed. This is truly a synergistic method: the low-level motion planner
enables scalability of the high-level plan synthesis with respect to dynamic obsta-
cles, and the high-level mission planner enforces correctness of the low-level mo-
tion. We provide formal guarantees for our approach and demonstrate it via physical
experiments with ground robots and simulations with a team of quadrotors.

1 Introduction

We aim to synthesize correct-by-construction controllers for a team of robots per-
forming high-level tasks that capture locomotion and actuation. Towards the goal of
capable human-robot teams, the tasks we consider are reactive, requiring each robot
to react and adapt to changes in the environment (e.g. the motion of other robots or

Jonathan DeCastro and Javier Alonso-Mora contributed equally to this work
Jonathan A. DeCastro and Hadas Kress-Gazit
Cornell University, {jad455,hadaskg}@cornell.edu
Javier Alonso-Mora and Daniela Rus
Massachusetts Institute of Technology, {jalonsom,rus}@mit.edu
Vasumathi Raman
California Institute of Technology, vasu@caltech.edu

1

2 J. A. DeCastro, J. Alonso-Mora, V. Raman, D. Rus, H. Kress-Gazit

people) at runtime. It has been demonstrated that reactive task specifications written
in linear temporal logic (LTL) can be automatically converted into high-level plans
that compose basic (atomic) actions to fulfill the task [10]. For example, consider
two robots tasked with patrolling the rooms of a house in order to remove garbage
and pick up misplaced toys. For high-level synthesis, the atomic actions “remove
garbage” and “pick up toys” are assumed to be perfectly executable: they are treated
as black boxes in a discrete abstraction implicit to the specified task. When a con-
troller is synthesized for this high-level mission specification, it therefore does not
govern the design of these low-level actions, nor the behavior of the dynamic obsta-
cles – e.g. the inhabitants of the household – that may interfere with their execution.
In this work, we address the challenge of ensuring collision-freeness of the gen-
erated motion plans, bridging this disconnect between the high-level plan and the
low-level actions.

Our approach efficiently abstracts collisions between the robots and dynamic ob-
stacles, and automatically synthesizes a controller for each robot such that the team
satisfies the high-level specification. Synthesis is made tractable using a local nav-
igation controller for collision-avoidance, eliminating the need to explicitly model
dynamic obstacles in the discrete abstraction. We show that we are able to preserve
the global guarantees on task satisfaction using a local method for collision avoid-
ance. This is significant because local planning methods are myopic, and usually
do not yield global guarantees in multi-agent settings due to the threat of deadlock
(a robot is unable to make forward progress) or livelock (the robot is trapped in an
infinite cycle without ever achieving its goals).

Our method applies to the general case of motion planning tasks for multi-robot
systems involving unmodeled and uncontrolled dynamic obstacles. We reduce the
worst-case conservatism with respect to uncontrolled agents and dynamic obstacles
that is typical of most approaches based on reactive synthesis (e.g. [15]). Our results
have major implications on the scalability of controller synthesis for dynamic and
partially-unmodeled environments.

1.1 Related work
High-level Reactive Synthesis. Reactive synthesis offers a user-friendly approach
to the control of complex robotic systems [10], and is especially compelling given
the complex nature of multi-agent scenarios. Correct-by-construction reactive con-
trollers have been extended with notions of optimality [15] and distributed team-
ing [5]. In most approaches, moving obstacles are modeled in a discrete manner as
part of the abstraction, leading to over-conservative restrictions like requiring robots
to be at least one region apart. Synthesis in dynamic environments thus presents a
crucial dilemma: explicitly modeling the state of all other agents is computation-
ally prohibitive, but incomplete models can obliterate the guarantees afforded by
the planner. To address the state-explosion problem when modeling uncontrollable
agents, [18] formulate an incremental procedure that adapts the number of agents
considered in the plan depending on available computational resources. On the other
hand, the authors in [12] make local modifications to the synthesized strategy when
new elements of the environment are discovered that violate the original assump-

Collision-Free Reactive Mission and Motion Planning for Multi-Robot Systems 3

tions. In contrast to previous work on synthesis for multi-robot tasks, our method
preserves guarantees via local collision avoidance, only requiring local awareness
of the robot’s surroundings. While we also update our specification in a system-
atic fashion, we do so offline (prior to execution), such that the synthesized strate-
gies preserve guarantees at runtime. Our approach to providing feedback on failed
specifications, described in Section 4.2, is inspired by recent formal approaches to
automated assumption generation [3, 6, 11] and explaining the cause of failure [13].

Collision Avoidance. Online reactive methods, such as [2], typically do not pro-
vide global mission fulfillment guarantees. We leverage and extend this work to
enforce collision avoidance and motion constraints in the short time horizon, while
relying on the high-level planner for guidance to fulfill the global mission.

1.2 Contribution
Our contribution is a holistic synthesis approach that leverages high-level mission
planning and low-level motion planning to provably achieve collision-free high-
level behaviors in dynamic environments. Local planning capabilities are abstracted
in a manner that allows dynamic obstacles to remain unmodeled at the high level
during synthesis, and the high level provides deadlock resolution strategies that en-
sure task satisfaction.

We further contribute:
(a) Automatic feedback-generation for revising specifications. We automatically

generate human-comprehensible assumptions in LTL that, if satisfied by the
controlled robots and the dynamic obstacles, would ensure correct behavior.

(b) An optimization-based method that extends [2] for synthesizing controllers
that guarantee real-time collision avoidance with static and dynamic obstacles
in 3D environments while remaining faithful to the robot’s dynamics.

Experimental results with ground robots and simulated quadrotors are discussed.

2 Preliminaries

Scalars are denoted by x and vectors by x 2 Rn, with n denoting the dimension of
the workspace. The robot’s current position is denoted by p 2 Rn and its current
velocity by v = ṗ. A map of the workspace W ⇢ Rn is considered, and formed by a
set of static obstacles (given by a list of polytopes) O⇢Rn. For high-level synthesis,
the map is abstracted by a set of discrete regions R= {R1 . . .Rp} covering the map
W , where the open sets Ra ✓W .

2.1 Linear Temporal Logic
LTL formulas are defined over the set AP of atomic (Boolean) propositions by the
recursive grammar j ::= p 2 AP | j1^j2 | ¬j |�j | j1 U j2. From the Boolean
operators ^ “conjunction” and ¬ “negation”, and the temporal operators� “next”
and U “until”, the following operators are derived: “disjunction” _, “implication”
), “equivalence”,, “always” ⇤, and “eventually” ⇤. Refer to [16] for a descrip-
tion of the semantics of LTL. Let AP represent the set of atomic propositions, con-

4 J. A. DeCastro, J. Alonso-Mora, V. Raman, D. Rus, H. Kress-Gazit

sisting of environment propositions (X) corresponding to thresholded sensor values,
and system propositions (Y) corresponding to the robot’s actions and location with
respect to a partitioning of the workspace. The value of each p 2 X [Y is the ab-
stracted binary state of a low-level component.

Definition 1 (Reactive Mission Specification). A Reactive Mission Specification is
an LTL formula of the form j = je

i ^ je
t ^ je

g =) js
i ^ js

t ^ js
g, with s and e

standing for ‘system’ and ‘environment’, such that
• je

i , js
i are formulas for the initial conditions free of temporal operators.

• je
t , js

t are the safety conditions (transitions) to be satisfied always, and are of
the form ⇤y , where y is a Boolean formula over AP[�AP.

• je
g , js

g are the liveness conditions (goals) to be satisfied infinitely often, with
each taking the form ⇤ ⇤y , with y a Boolean formula over AP[�AP.

A strategy automaton that realizes a reactive mission specification j is a deter-
ministic strategy that, given a finite sequence of truth assignments to the variables
in X and Y , and the next truth assignment to variables in X , provides a truth as-
signment to variables in Y such that the resulting infinite sequence satisfies j . If
such a strategy can be found, j is realizable. Otherwise, it is unrealizable. Strat-
egy automata for j of the form above can be synthesized [4], and converted into
hybrid controllers for robotic systems by invoking atomic controllers [10]. These
controllers are reactive: they respond to sensor events at runtime.

2.2 LTL encoding for multi-robot tasks
We adopt an LTL encoding that is robust to the inherent variability in the duration of
inter-region robot motion in continuous environments [14]. Let APR = {p i

a | Ra 2
R} be the set of Boolean propositions representing the workspace regions , such
that p i

a 2 APR is True when robot i is physically in Ra for a 2 [1, p]. We call
p i

a in APR ✓ X a completion proposition, signaling when robot i reaches Ra . We
also define the set APact

R ✓ Y that captures robot commands that initiate movement
between regions. We call p i

act,a in APact
R an activation variable for moving to Ra .

Non-motion actions are handled similarly.

Definition 2 (LTL Encoding of Motion [14]). A task encoding that admits arbitrary
controller execution durations is

ys
t :

^

p i
a2APR,

i2[1,nrobots]

⇤(�p i
a)

_

Rb2Ad j(Ra)

�p i
act,b), ye

t :
^

p i
a2APR,

Rb2Ad j(Ra),
i2[1,nrobots]

⇤(p i
a ^p i

act,b)�p i
a _�p i

b),

ye
g : ⇤ ⇤

^

i2[1,nrobots]
p i

act,a2APact
R [APact

A

��
p i

act,a ^�(p i
a _¬p i

act,a)
�_ �¬p i

act,a ^�(¬p i
a _p i

act,a)
��

,

where Ad j : R! 2R is an adjacency relation on regions in R and nrobots is the num-
ber of robots. The ys

t -formula is a system safety condition describing which actions
can occur (�p i

act,b) given the observed completion variables (�p i
a). Formula ye

t

Collision-Free Reactive Mission and Motion Planning for Multi-Robot Systems 5

captures the allowed transitions (�p i
b) given past completion (p i

a) and activation
(p i

act,b) variables. Formula ye
g enforces that every motion and every action eventu-

ally completes as long as the activation variable is held fixed. Both ye
t and ye

g are
included as conjuncts to the antecedent of j .

2.3 Local motion planning and robot dynamics
A collision-free local motion for each robot is computed independently and online
based on the current transition in the strategy automaton. We build on the work on
distributed Reciprocal Velocity Obstacles with motion constraints [1], and its recent
extension to aerial vehicles [2]. Letting t 2 R+ denote time and tk the current time
instant, we define the relative time t̃ = t � tk 2 [0,•) and the time horizon of the
local planner t > 0, greater than the required time to stop.

For a robot, a set of candidate local trajectories is considered, each defined by
probot(t̃) = f (z,u, t̃), continuous in the initial state z = [p, ṗ, p̈, . . .] of the robot,
respecting its dynamic constraints and given by an appropriate controller con-
verging to a straight-line reference trajectory pref(t̃) = p+ut̃ of constant velocity
u 2 Rn and starting at the current position p of the robot. Local trajectories are now
parametrized by u. Suitable controllers include LQR and second order exponential
curves, for ground robots [1] and quadrotors [2]. For a given robotic platform and
controller, initial state z and reference velocity u, the maximum deviation (initial
position independent) between the reference and the simulated trajectory is

g(z,u) = max
t̃>0

||(p+ t̃u)� f (z,u, t̃)||2. (1)

Maximal errors g(z,u) are precomputed, and stored for on-line use, for the low-level
controller f (z,ui, t̃) and a discretization of initial states z and reference velocities u.

The idea of the method is as follows: (a) the radius of the robot is enlarged by
a value e > 0 for collision avoidance, computed with respect to the reference tra-
jectories p+ ut and (b) the local trajectories are limited to those with a tracking
error below e with respect to their reference trajectory. At each time-step an opti-
mal reference velocity u⇤ 2 Rn is obtained by solving a convex optimization in Rn.
The associated local trajectory is collision-free, satisfies the motion constraints and
minimizes the deviation to a preferred velocity ū.

We approximate robots by their smallest enclosing cylinder of radius r and height
2h, denoted by V, and its e-additive dilation of radius r̄ = r+e and height h̄ = h+e
by Ve , and assume that all dynamic obstacles maintain a constant velocity during
the planning horizon, or cooperate in avoiding collisions.

3 Problem formulation and approach

Example 1. Consider the workspace in Fig. 1 (a), where two robots are tasked with
visiting regions G1 and G2 infinitely often, jg

s =
V

i2{1,2}⇤ ⇤(p i
G1)^⇤ ⇤(p i

G2).

Figure 1 shows three approaches for solving this task. A simplistic approach is
given in (a), where the robots do not have any collision avoidance and must always

6 J. A. DeCastro, J. Alonso-Mora, V. Raman, D. Rus, H. Kress-Gazit

G1

G2

R1

R2

R3

(a) Mutually exclusive

Blue and green dead-
locked and unable to
resolve

(b) Local planner

(1) Blue and green
deadlocked

(2) Blue moves to R2, al-
lowing green to enter G1

(c) Integrated approach

Fig. 1: Three examples of motion planning, where the blue and green robots are initially in G1 and
G2, respectively. (a) is the case with a global planner with no local planner; (b) and (c) correspond
to the specifications j (no deadlock resolution) and j 00 (with deadlock resolution) respectively.

be one region apart from one another. The result is thus conservative; in fact, if any
one region is blocked, the spec would be unrealizable. As will be shown in Sec. 7
this approach does not scale in the presence of dynamic obstacles. In (b), the robots
employ a local planner to avoid collisions, along with a high-level controller that is
less conservative but ignores deadlock. In this case, the execution fails to satisfy the
task when the two robots become deadlocked. (c) shows our approach, where both
robots are able to resolve encountered deadlocks under the synthesized integrated
controller. The strategy can exploit the use of other regions if deadlock occurs.

3.1 Problem formulation
Problem 1 (Local Collision Avoidance). For each robot of the team, construct an
online local planner that respects the dynamics of the robot and guarantees collision
avoidance with static and dynamic (moving) obstacles.

Problem 2 (Synthesis of High-level Controller with Deadlock Resolution). Given
a topological map, a local motion planner that solves Problem 1 and a realizable
mission specification j that ignores collisions, automatically construct a specifica-
tion j 0 that models deadlock between robots and unmodeled dynamic obstacles and
synthesize a controller that satisfies j 0.

By solving Problem 2, we guarantee avoiding deadlocks, but possibly at the sac-
rifice of task fulfillment. We therefore synthesize environment assumption revisions
(additional LTL formulas) to identify detrimental cases where dynamic obstacles
may trigger deadlock and trap the system from achieving its goals. These formu-
las are significant because they offer conditions upon which the environment must
adhere to in order for the robot team to guarantee the task. As such, they must be
clearly explained to the user. An example of such a condition is: “the environment
will never cause deadlock if robot 1 is in the kitchen and moving to the door”.

Problem 3 (Revising Environment Assumptions). Given an unrealizable reactive
mission specification j 0, synthesize environment assumption revisions [je

t]
rev such

that the specification j 00 formed by replacing je
t with [je

t]
rev is realizable, and pro-

vide the user with a human-readable description of these revisions.

Collision-Free Reactive Mission and Motion Planning for Multi-Robot Systems 7

LTL parser Deadlock resolution

Reactive synthesisRevision & recovery

Synthesis of revisionsStructured
English

specification

Topological map

User feedback

Motion constraints (per agent)Robot dynamics

Off-line

Finite state machine

On-line

Local
motion
planner

. . .

Robot

Map

Neighboring
agents

(p, v, size)

Position and deadlock state sensor

Local
motion
planner

Robot

Fig. 2: Structure of the proposed mission planner, with offline and online parts.

3.2 Approach
We present a two-part solution to Problems 1, 2 and 3. Figure 2 shows the offline
and online components and their interconnections; we now describe them in detail.

Offline. Given a high-level specification that takes a discrete topological map
of the workspace and ignores collisions, a centralized controller is synthesized
that considers possible deadlocks, iteratively revising the environment assumptions
as necessary until a such a controller is synthesized. We also adopt a recovery
scheme [17] that synthesizes a strategy that allows violations of environment safety
assumptions to be tolerated, retaining satisfaction guarantees as long as the violation
is transient. The automaton is agnostic to the robot’s dynamics, which are instead
accounted for by the local planner. The offline high-level synthesis is described in
Sec. 4.

Online. At each time step of the execution, the synthesized automaton provides
a desired goal for each controlled robot. Each robot independently computes a local
trajectory that achieves its goal while avoiding other agents. If a deadlock is sensed,
an alternative goal is extracted for some robot; the existence of such an alternative in
the automaton is guaranteed by construction. The online local planner builds on [2]
by adopting a convex optimization approach as described in Sec. 5.

4 Offline synthesis of the high-level mission plan

We consider a high-level task specification, and a topological map of the environ-
ment composed of regions. This task specification j ignores collisions and may
result in deadlocks as in Fig 1(b). We modify the input specification with additional
behaviors that the robot can take to resolve deadlock. The synthesized automaton
guarantees completion of the task while redirecting the robots whenever deadlock
occurs.

4.1 Deadlock resolution
We define physical deadlock to be a situation where at least one robot has not
reached its goal but cannot move. This can happen when an agent becomes blocked
either by another agent or by a dynamic obstacle. To allow the high-level controller
to resolve deadlock, we define a Boolean input signal xi 2 X that declares when a

8 J. A. DeCastro, J. Alonso-Mora, V. Raman, D. Rus, H. Kress-Gazit

robot is in deadlock, where i = 1, . . . ,nrobots. We use the term singleton deadlock to
refer to the specific case where a robot is in proximity of a dynamic obstacle. Ad-
ditionally, define xi j 2 X to be an input signal that is True when two robots are in
pairwise deadlock (both in deadlock and within a certain distance of one another),
and False otherwise. We introduce the following shorthand:

q i j
P = ¬xi j ^�xi j rising edge–pairwise deadlock between robots i and j

q i
S = ¬xi^�xi rising edge–singleton deadlock for robot i

y i
ab = p i

a ^�p i
a ^p i

act,b incomplete transition (a 6= b); remain in region (a = b)

Resolving deadlock by redirecting the robot’s motion based on the instantaneous
value of xi or xi j alone may result in livelock, where the robot may be trapped
away from its goals as a result of an alternating deadlock status. For this reason,
our scheme automatically introduces additional memory propositions that are set
when deadlock is sensed, and reset once the robot leaves its current region. While
adding these propositions increases the state space of the synthesis problem, the
advantage is that the robot can remember that deadlock had occurred and actively
alter its strategy to overcome that situation. For each robot, we introduce the system
propositions {yi

b | Rb 2 R} ⇢ Y to represent the memory of deadlock occurring
when activating a transition from a given region to region Rb .

⇤
^

p i
a2APR,

Rb2Ad j(Ra)

⇣
yi

b ^p i
a =) �(¬p i

act,a ^¬p i
act,b)

⌘
. (2)

The role of yi
b is to disallow the current transition (from Ra to Rb), as well as the

self-transition from Ra to Ra . The self-transition is disallowed to force the robot
to leave the region where the deadlock occurred (Ra), instead of waiting for it to
resolve; Rb is disallowed since the robot cannot make that transition.

Next, we enforce conditions to retain memory of singleton deadlock:
^

p i
a2APR,

Rb2Ad j(Ra)

⇣
¬yi

b)
⇣
(q i

S ^y i
ab))�yi

b

⌘⌘
and

^

p i
a2APR,

Rb2Ad j(Ra)

⇣
yi

b)
⇣
(p i

a ^�p i
a),�yi

b

⌘⌘
. (3)

The first formula sets the memory of deadlock yi
b if the robot is activating transition

from Ra to Rb . The second formula keeps memory set until a transition has been
made out of Ra (to a region different from Rb).

For pairwise deadlock, we add the following conditions to set the memory propo-
sition for at least one robot (at least one of the two robots reacts to the deadlock):

⇤
⇣

q i j
P =)

⇣ _

`2{i, j}

^

p`
a2APR,

Rb2Ad j(Ra)

⇣
¬y`b ^y`

ab

⌘
=) �y`b

⌘⌘
. (4)

We also add the following to ensure that the memory propositions are only set when
the rising edge of deadlock (singleton or pairwise) is sensed.

Collision-Free Reactive Mission and Motion Planning for Multi-Robot Systems 9

⇤
⇣ ^

i2[1,nrobots]
Rb2R

⇣
¬yi

b^¬q i
S^

^

j2[1,nrobots]
j 6=i

¬q i j
P

⌘
=) �¬yi

b

⌘
. (5)

In practice, we do not need a proposition yi
b for every Rb 2 R, but only d =

max
Ra2R

(|Ad j(Ra)|) such propositions for each robot in order to remember all of the

deadlocks around each region of the workspace. The number of conjuncts required
for condition (4) is

�nrobots
2

�
, but this has no effect on scalability since the runtime of

the synthesis algorithm is only a function of the number of propositions and not the
size of the specification.

Conjuncting the conditions (2)–(5) with js
t yields a modified formula [js

t]
0 over

the set AP, and the new specification j 0 = je
i ^je

t ^je
g =) [js

i]
0 ^ [js

t]
0 ^js

g, where
the initial conditions are modified by setting additional propositions xi,yi

a to false.

4.2 Specification revisions

If the above specification j 0 is synthesizable, Problem 2 is solved (for a proof,
see Sec. 6). However, if the added restrictions to the system behavior result in the
specification being unrealizable, Problem 3 must be solved by finding a set of as-
sumptions on deadlock under which the environment must follow for the task to be
guaranteed. These assumptions are then presented to the user as a certificate of the
conditions under which the guarantees for deadlock and livelock avoidance hold.

When a specification is unrealizable, there exist environment behaviors (called
environment counterstrategies) that prevent the system from achieving its goals
safely. Here we build upon the work of [3, 6, 11], processing synthesized counter-
strategies to mine the necessary assumptions. Rather than synthesize assumptions
from the counterstrategy, we instead search the counterstrategy for all deadlock oc-
currences, then store the corresponding conditions as assumptions.

We denote Cj 0 as a state machine representing the counterstrategy for j 0 and Q
as the set of states for Cj 0 . To find the graph cuts in the counterstrategy graph that
prevent the environment from impeding the system, we first define the following
propositional representation of state q 2Q as y(q) = yX (q)^yY(q), where

yY(q) =
^

p2gY (q)

p ^
^

p2Y\gY (q)

¬p, yX (q) =
^

p2gX (q)

p ^
^

p2X\gX (q)

¬p.

Next, the set of cut transitions Scuts is computed as Scuts = {(p,q) 2 Q2 | q 2
d (p),y(p)y(q) |= W

i2[1,nrobots]
�q i

S}, where d : Q⇥ 2Y ! 2Q is a transition re-
lation returning the set of possible successor states given the current state and val-
uations of robot commands in Y . Scuts collects those transitions on which the envi-
ronment has intervened (by setting deadlock) to prevent the system from reaching
its goals.

Finally, the following safety assumptions are found:

10 J. A. DeCastro, J. Alonso-Mora, V. Raman, D. Rus, H. Kress-Gazit

je
rev =⇤

^

(p,q)2Scuts

(yY(p)^yX (p) =) ¬�yX (q)) (6)

If any of the conjuncts in (6) falsify the environment, they are discarded. Then, set
[je

t]
rev = je

t ^je
rev and construct the final specification j 00 = je

i ^ [je
t]

rev^je
g =)

[js
i]
0 ^ [js

t]
0 ^js

g.
Algorithm 1 expresses our proposed approach for resolving deadlock. The auto-

matically generated assumptions act to restrict the behavior of the dynamic obsta-
cles. Each revision of the high-level specification excludes at least one environment
move in a given state. Letting | · | denote set cardinality, with 2|X | environment ac-
tions and 2|Y | states, at most 2(|Y |+|X |) iterations occur, though in our experience far
fewer are needed. The generated assumptions are minimally restrictive – omitting
even one allows the environment to cause deadlock, resulting in unrealizability.

Algorithm 1 Find realizable j 00 fulfilling task j and resolving deadlock
1: j 0 je

i ^je
t ^je

g =) [js
i]
0 ^ [js

t]
0 ^js

g
2: [je

t]
rev je

t ; j 00 je
i ^ [je

t]
rev^je

g) [js
i]
0 ^ [js

t]
0 ^js

g
3: while j 00 is unrealizable do
4: Extract Cj 00 from j 00
5: je

rev Eq. (6)
6: for each kth conjunct of je

rev s.t. je
rev[k]^ [je

t]
rev 6=False do

7: Parse je
rev[k] into human-readable form and display to user.

8: [je
t]

rev [je
t]

rev^je
rev[k]; j 00 je

i ^ [je
t]

rev^je
g) [js

i]
0 ^ [js

t]
0 ^js

g
9: end for

10: end while

5 Online local motion planning

The result of the computation of Sec. 4 is a finite state machine where the states
are labeled by regions and the transitions represent actions within the allowed nav-
igation path. Each robot executes the finite state machine controller such that the
overall multi-robot system is guaranteed to be livelock and collision free and dead-
locks are resolved (may they appear). In this section we describe the local planner
that links the high-level mission plan with the physical robot (recall Fig. 2). At each
step of the online execution, the synthesized finite state machine provides a desired
goal position for each robot and a preferred velocity ū 2 Rn towards it.

5.1 Constraints
To define the motion and inter-agent avoidance constraints we build on the approach
in [2]. We additionally introduce constraints for avoiding static obstacles. For com-
pleteness, we give an overview of each of the constraints.

Motion constraints. Recalling Eq. (1) the motion constraint is given by the ref-
erence velocities for which the tracking error is below e , R(z,e) = {u |g(z,u) e},
approximated by the largest inscribed convex polytope/ellipsoid R̂(z,e)⇢ R(z,e).

Collision-Free Reactive Mission and Motion Planning for Multi-Robot Systems 11

Avoidance of other agents. Denote by p j, v j, r̄ j and h̄ j the position, velocity,
dilated radius and height of a neighboring agent j. Assume that it keeps its velocity
constant for t̃  t , for reciprocity see [2]. For every neighboring agent j, the con-
straint is given by the reference velocities u for which the agents’ enveloping shape
do not intersect within the time horizon. For cylindrically-shaped agents moving in
3D the velocity obstacle of colliding velocities is a truncated cone VOt

j =

{u |9t̃ 2 [0,t] : kpH�pH
j +(uH�vH

j)t̃k  r̄+ r̄ j, |pV � pV
j +(uV �uV

j)t̃| h̄+ h̄ j},

where p = [pH , pV], with pH 2R2 its projection onto the horizontal plane and pV 2
R its vertical component. The constraint is linearized to A j(p,e) = {u |nT

j u  b j},
where n j 2 R3 and b j 2 R maximize nT

j v�b j subject to A j(p,e)\VOt
j = /0.

Avoidance of static obstacles. We extend a recent fast iterative method to com-
pute the largest convex polytope in free space [7], by directing the growth of the
region in the preferred direction of motion and enforcing that both the current po-
sition of the robot and a look ahead point in the preferred direction of motion are
within the region. The convex polytope is computed in position space (R3 for aerial
vehicles) and then converted to an equivalent region in reference velocity space. The
details are given in Algorithm 2, where directedEllipsoid(p,q) is the ellipsoid with
one axis given by the segment p�q and the remaining axis infinitesimally small.

Algorithm 2 Largest collision-free directed convex polytope
1: L p+ ū{t,0.7t,0.5t, ...,0} ; q L[0]; L := L\q; P := /0
2: while L 6= /0 and p,q /2 P do
3: E directedEllipsoid(p,q)
4: while not converged do // Largest polytope seeded in E computed as in [7]
5: P separating planes of E and dilated O (Quadratic program) , P⇢ Rn \ (O+Ve)
6: If p,q /2 P then { q L[0]; L := L\q; break; }
7: E ellipsoid E⇢ P of maximal volume (Semi-Definite Program)
8: end while
9: end while

10: F(p,e) := (P�p)/t // Converts to ref. velocity, u, space

5.2 Optimization
The optimization cost is given by two parts. The first part is a regularizing term pe-
nalizing changes in velocity (weighted by design constant ā); the second minimizes
the deviation to a preferred velocity, corrected by a repulsive velocity ů inversely
proportional to the distance to neighboring obstacles [2] when in close proximity.
A convex optimization with quadratic cost and mixed linear/quadratic constraints is
solved:

u⇤ := arg min
u2Rn

(ā||u�v||2 + ||u� (ū+ ů)||2), (7)

s.t. u 2 R̂(z,e)\F(p,e) and nT
j u b j 8 j neighboring agent

12 J. A. DeCastro, J. Alonso-Mora, V. Raman, D. Rus, H. Kress-Gazit

The solution of this optimization is a collision-free reference velocity u⇤ which
minimizes the deviation towards the goal specified by the high-level state machine.
The associated trajectory (see Sec. 2.3) is followed by the robot and is collision-free.

6 Guarantees

We provide proofs for the guarantees inherent to our synthesized controller.
Respects the modeled robot dynamics. By construction of the local planner,

the controller is guaranteed correct with respect to the low-level controller f (z,u, t̃),
which is continuous on the initial state of the robot and respects its dynamics.

Yields collision-free motion. If (7) is feasible, collision-free motion is guaran-
teed for the local trajectory up to time t (the optimal reference trajectory is collision-
free for an agent whose volume is enlarged by e and the robot stays within e of it)
with the assumption that all interacting agents maintain a constant velocity. Avoid-
ance of dynamic obstacles was shown by [2], we reproduce it for the case of a dy-
namic obstacle in R2 (through it is extensible to R3). Let p(t) denote the position at
time t � tk. If not specified, variables are evaluated at tk. Consider ||p(t)�p j(t)||=

|| f (z,u, t̃)� (p j +v jt̃)|| �
u2R̂(z,e)

||(p+ut̃)� (p j +v jt̃)||� e �
u2A j(p,e)

r+ r j

For avoidance of static obstacles, we have that u 2 F(p,e) implies, for all t̃ 2 [0,t],

u 2 F(p,e))
Alg. 2, P convex

(p+ut̃) /2O+Ve)
u2R̂(z,e)

f (z,u, t̃) /2O+V.

If (7) is infeasible, no collision-free solution exists that respects all of the con-
straints. Since the time horizon is larger than the required time to stop, passive safety
is preserved by slowing down on the last feasible path and eventually reaching a
stop. Also, since this computation is performed at a high frequency, each individual
robot is able to adapt to changing situations, and the resulting motion is collision-
free.

Realizes the reactive task specification. Since the local planner is myopic, it
provides guarantees up to a time horizon t and consequently may result in deadlock
and livelock. However, as we have shown, the planner’s local guarantees allow a
discrete abstraction that the high-level strategy can use to resolve deadlocks and
avoid livelocks. Here we formally prove the guarantees on the high-level behavior
provided by our synergistic online and offline synthesis.

Proposition 1. Given a task specification j that ignores collisions, if the resulting
specification j 0 defined in Sec. 4 is realizable, then the corresponding strategy au-
tomaton also realizes j .

Proof. Assume given j =je
i ^je

t ^je
g =) js

i ^js
t ^js

g. Recall that j 0=je
i ^je

t ^
je

g =) [js
i]
0 ^ [js

t]
0 ^js

g, where [js
i]
0 and [js

t]
0 contain js

i and js
t as subformulas,

respectively. Suppose that strategy automaton Aj 0 realizes j 0. This means that the
resulting controller is guaranteed to fulfill the requirement [js

i]
0 ^ [js

t]
0 ^js

g as long

Collision-Free Reactive Mission and Motion Planning for Multi-Robot Systems 13

as the environment fulfills the assumption je
i ^je

t ^je
g . This implies that Aj 0 fulfills

js
i ^js

t ^js
g as long as the environment fulfills the assumption je

i ^je
t ^je

g . ut
Proposition 2. Given a task specification j that ignores collisions, if j is realizable
but the resulting specification j 0 is not realizable, then the revision procedure in
Sec. 4.2 will find an assumption je

rev to add to j 0.

Proof. Suppose j is realizable by strategy Aj , but j 0 is not realizable, admitting
counterstrategy Cj 0 = (Q, . . .). It suffices to show that the set Scuts is nonempty.
Assume for a contradiction that Scuts is empty. Then the rising edge of deadlock q i

s
never occurs for any i, so no robot transitions are ever disabled. Since we assume
that deadlock does not occur in the initial state, this means that xi is always False
for every i. Therefore [js

i]
0 ^ [js

t]
0 ^js

g defined in Sec. 4 reduces to js
i ^js

t ^js
g. The

lack of deadlock means that any region transition contained in Aj is still admissible,
and therefore Aj can be used as a strategy to realize j 0. ut

Note that it may be the case that Scut is nonempty, but for every (p,q) 2 Scuts, the
resulting revision (yY(p)^yX (p) =) ¬�yX (q)) contradicts j t

e. This indicates
that j is only realizable because it makes unreasonable assumptions on the environ-
ment. Our approach identifies this fact as a by-product of the revision process.

Computational complexity. The high-level reactive synthesis is exponential in
the number of propositions [4], which scales linearly with nrobots – no worse than ex-
isting approaches (e.g. [15]). When one or more dynamic obstacles are considered,
the number of propositions does not depend on the number of dynamic obstacles.

For the online component, a convex program is solved independently for each
robot, with the number of constraints linear in the number of neighboring robots.
The run-time of the iterative computation of the convex volume in free space barely
changes with the number of obstacles, up to tens of thousands [7], and a timeout can
be set, with the algorithm returning the best solution found.

7 Experiments and simulations

The synthesis procedure described in Sec. 4 was implemented with the slugs syn-
thesis tool [8], and executed with the LTLMoP toolkit [9]. The local motion planner,
Sec. 5, was implemented with the IRIS toolbox [7] and an off-the-shelf convex op-
timizer. We consider the dynamic obstacles to be cooperative in avoiding collisions.
A video is available at http://youtu.be/esa3osYtvGA.

7.1 Humanoid robots
We synthesize a controller for a “garbage collection” scenario, carried out by two
humanoid robots (able to rotate in place, move forward and along a curve) occupy-
ing the workspace in Fig. 3(a). The robots are required to patrol the Living Room
(RLR) and Bedroom (RBR) [⇤ ⇤(p1

LR)^⇤ ⇤(p1
BR)^⇤ ⇤(p2

LR)^⇤ ⇤(p2
BR)]

and if garbage is observed, pick it up [⇤(p1
garb =) p1

act,pickup)^⇤(p2
garb =)

p2
act,pickup)]. The robots must always avoid other moving agents.

http://youtu.be/esa3osYtvGA

14 J. A. DeCastro, J. Alonso-Mora, V. Raman, D. Rus, H. Kress-Gazit

The system propositions are actions to move between regions (p i
act,LR, . . . ,p i

act,BR)
and to pick up (p i

act,pickup). The environment propositions are sensed garbage (p i
garb),

region completions (p i
LR, . . . ,p i

BR), and pick up completion (p i
pickup). We omit the

encoding of Def. 2, though these conditions are implied. Our synthesis tool took 84
seconds yielding an automaton with 5836 states and four memory propositions.

A graphical representation of the revisions produced by our algorithm is shown in
Fig. 3(a). The red dots indicate that dynamic obstacles should not produce deadlock
when the robot is making the indicated transition. We also alert the user via textual
feedback – one of the generated statements for our scenario is: Deadlock should

not occur when robot 1 is in the Hall moving toward the Living Room.

We employ two Aldebaran Nao robots and a teleoperated KUKA youBot as the dy-
namic obstacle. As demonstrated in the snapshots in Fig. 3, the Naos are capable of
executing the task, avoiding collision and resolving deadlocks.

We further evaluated the approach in simulation, from 10 different initial condi-
tions and with two dynamic obstacles. No collisions occurred and the approach was
able to resolve 47 deadlock events out of the 51 encountered. Those that could not
be resolved occurred in disallowed transitions labeled red in Fig. 3(a).

7.2 Scalability with respect to dynamic obstacles
Considering the example in Sec. 7.1, the synthesized controller for two robots con-
sists of 29 propositions, and is invariant to the number of dynamic obstacles. In
comparison, we consider a baseline approach similar to Fig. 1(a) without a local
planner where one-cell separation with other robots and dynamic obstacles (DO) is

1

1

11

1

1

1

1

1

1 2

2

2

2

2

2

2

2

2

2

12

12

12

12

12

12

12

12

12

12

(a) Workspace with specifi-
cation revisions

(b) Avoidance maneuver (c) Deadlock resolu-
tion

Fig. 3: Planar scenario with two centrally-controlled Nao robots and a dynamic obstacle
(youBot). (a) Workspace showing specification revisions for each region completion/activation
pairs where singleton or pairwise deadlock may occur. Dot placement corresponds to the APact

R for
each region; numbers indicate the robot(s) that are allowed to be in deadlock, and color represents
the necessary restrictions on deadlock. Green dots represent transitions where deadlock is allowed;
yellow dots where deadlock is allowed, but only up to a finite time; and red dots where deadlock
is not allowed. (b)–(c) Three consecutive frames of the video are superimposed. In (c), one of the
Naos reverses direction to resolve the deadlock with the youBot.

Collision-Free Reactive Mission and Motion Planning for Multi-Robot Systems 15

kept. In this case, 20 propositions are required for zero DO, 25 for one DO, 30 for
two DO, 35 for three DO and 80 propositions for eight DO. Because the obstacles
are assumed to behave adversarially, they can violate mutual exclusion if they en-
ter to within a neighboring region to the robot. Hence, the synthesis procedure is
not realizable for one or more dynamic obstacles. Our approach, on the other hand,
is realizable independently of the number of dynamic obstacles and requires fewer
propositions than the case with two or more DO.

7.3 Quadrotors
We next demonstrate the effectiveness of the approach in a 3D scenario with the
5⇥5⇥5 m3 two floor workspace shown in Fig. 4, where robots can move between
floors through a vertical opening at the left corner or the stairs at the right side of
the room. We simulate, using the model described in [2], two controlled quadrotors,
and one more as a dynamic obstacle. The task is to infinitely often visit the top and
bottom floors while avoiding collisions and resolving deadlock. The high-level con-
troller is synthesized as described in Sec. 4. A local planner for the 3D environment
is constructed following Sec. 5. A representative experiment is shown in the snap-
shots in Fig. 4. The green robot enters deadlock when moving towards the upwards
corridor; however, deadlock is resolved by taking the alternative route up the stairs.

8 Conclusion

We present a framework for synthesizing a high-level finite state machine and
collision-free local planner that guarantees completion of a task specified in linear
temporal logic, where we consider high-level specifications that are able to capture
basic locomotion, sensing and actuation capabilities. Our approach is less conserva-
tive than current approaches that impose a separation between agents, and is compu-
tationally cheaper than explicitly modeling all possible obstacles in the environment.
If no controller is found that satisfies the specification, the approach automatically
generates the needed assumptions on deadlock to render the specification realiz-
able and communicates these to the user. The approach generates controllers that
accommodate deadlock between robots or with dynamic obstacles independently
of the precise number of obstacles present, and we have shown that the generated

Fig. 4: Deadlock resolution (green robot) and safe navigation in a 3D environment. Quadrotors
are displayed at the final time and their paths for the time interval. Each yellow disk represents a
quadrotor and the cylinder its safety volume. The orange robot represents the dynamic obstacle.

16 J. A. DeCastro, J. Alonso-Mora, V. Raman, D. Rus, H. Kress-Gazit

controllers are correct with respect to the original specification. Experiments with
ground and aerial robots demonstrate collision avoidance with other agents and ob-
stacles, satisfaction of a task, deadlock resolution and livelock-free motion. Future
work includes optimizing the set of revisions found, and decentralizing the synthe-
sized controller.

Acknowledgements This work was supported in part by NSF Expeditions in Computer Aug-
mented Program Engineering (ExCAPE), ONR MURI Antidote N00014-09-1-1031, SMARTS
N00014-09-1051, the Boeing Company and TerraSwarm, one of six centers of STARnet, a Semi-
conductor Research Corporation program sponsored by MARCO and DARPA.

References
1. Alonso-Mora, J., Gohl, P., Watson, S., Siegwart, R., Beardsley, P.: Shared control of au-

tonomous vehicles based on velocity space optimization. In: Robotics and Automation
(ICRA), 2014 IEEE International Conference on, pp. 1639–1645 (2014)

2. Alonso-Mora, J., Naegeli, T., Siegwart, R., Beardsley, P.: Collision Avoidance for Multiple
Aerial Vehicles. Autonomous Robots (2015)

3. Alur, R., Moarref, S., Topcu, U.: Counter-strategy guided refinement of gr(1) temporal logic
specifications. In: Formal Methods in Computer-Aided Design (FMCAD), pp. 26–33 (2013)

4. Bloem, R., Jobstmann, B., Piterman, N., Pnueli, A., Sa’ar, Y.: Synthesis of reactive (1) designs.
Journal of Computer and System Sciences 78(3), 911–938 (2012)

5. Chen, Y., Ding, X.C., Stefanescu, A., Belta, C.: Formal approach to the deployment of dis-
tributed robotic teams. IEEE Transactions on Robotics 28(1), 158–171 (2012)

6. DeCastro, J.A., Ehlers, R., Rungger, M., Balkan, A., Tabuada, P., Kress-Gazit, H.: Dynamics-
based reactive synthesis and automated revisions for high-level robot control. CoRR (2014)

7. Deits, R., Tedrake, R.: Computing large convex regions of obstacle-free space through
semidefinite programming. Workshop on the Algorithmic Fundamentals of Robotics (2014)

8. Ehlers, R., Finucane, C., Raman, V.: Slugs gr(1) synthesizer (2013). URL http://
github.com/ltlmop/slugs

9. Finucane, C., Jing, G., Kress-Gazit, H.: Ltlmop: Experimenting with language, temporal logic
and robot control. In: Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (2010)

10. Kress-Gazit, H., Fainekos, G.E., Pappas, G.J.: Temporal logic based reactive mission and mo-
tion planning. IEEE Transactions on Robotics 25(6), 1370–1381 (2009)

11. Li, W., Dworkin, L., Seshia, S.A.: Mining assumptions for synthesis. In: 9th IEEE/ACM Int.
Conf. on Formal Methods and Models for Codesign, MEMOCODE (2011)

12. Livingston, S.C., Prabhakar, P., Jose, A.B., Murray, R.M.: Patching task-level robot controllers
based on a local µ-calculus formula. In: Proc. of the IEEE Int. Conf. on Robotics and Au-
tomation (ICRA). Karlsruhe, Germany (2013)

13. Raman, V., Kress-Gazit, H.: Explaining impossible high-level robot behaviors. IEEE Trans-
actions on Robotics 29(1), 94–104 (2013). DOI 10.1109/TRO.2012.2214558

14. Raman, V., Piterman, N., Kress-Gazit, H.: Provably correct continuous control for high-level
robot behaviors with actions of arbitrary execution durations. In: IEEE Int. Conf. on Robotics
and Automation (2013)

15. Ulusoy, A., Smith, S.L., Ding, X.C., Belta, C., Rus, D.: Optimality and robustness in multi-
robot path planning with temporal logic constraints. I. J. Robotic Res. 32(8), 889–911 (2013)

16. Vardi, M.Y.: An automata-theoretic approach to linear temporal logic. In: Logics for concur-
rency, pp. 238–266. Springer (1996)

17. Wong, K.W., Ehlers, R., Kress-Gazit, H.: Correct high-level robot behavior in environments
with unexpected events. In: Proc. of Robotics: Science and Systems (2014)

18. Wongpiromsarn, T., Ulusoy, A., Belta, C., Frazzoli, E., Rus, D.: Incremental synthesis of con-
trol policies for heterogeneous multi-agent systems with linear temporal logic specifications.
In: Robotics and Automation (ICRA), IEEE Int. Conf. on (2013)

http://github.com/ltlmop/slugs
http://github.com/ltlmop/slugs

	Collision-Free Reactive Mission and Motion Planning for Multi-Robot Systems
	Jonathan A. DeCastro, Javier Alonso-Mora, Vasumathi Raman, Daniela Rus and Hadas Kress-Gazit
	Introduction
	Related work
	Contribution

	Preliminaries
	Linear Temporal Logic
	LTL encoding for multi-robot tasks
	Local motion planning and robot dynamics

	Problem formulation and approach
	Problem formulation
	Approach

	Offline synthesis of the high-level mission plan
	Deadlock resolution
	Specification revisions

	Online local motion planning
	Constraints
	Optimization

	Guarantees
	Experiments and simulations
	Humanoid robots
	Scalability with respect to dynamic obstacles
	Quadrotors

	Conclusion
	References

