Reactive Switching Protocols for Multi-Robot High-Level Tasks

Vasumathi Raman

Abstract— This paper considers a team of cooperative, ho-
mogeneous robots operating in a nondeterministic environment,
performing complex high-level tasks. We concurrently solve the
problems of dynamic task assignment and reactive planning in
a centralized fashion, allowing goal reassignment as needed
in response to changes in the environment. To this end, we
model the team of robots as a switched system whose various
modes must be activated to satisfy high-level specifications,
and describe a formal framework for synthesizing switching
protocols for this system. The robots’ continuous dynamics
under a specific task allocation, as well as their operating
environment, are encoded as formulas on a discrete abstraction,
in the GR(1) fragment of linear temporal logic. The synthesized
protocols ensure that the multi-robot task is fulfilled even
in adversarial environments, and the presented abstraction
provides a significant computational improvement over previ-
ous approaches. We illustrate these ideas in simulation, with
applications to intrusion detection and surveillance.

I. INTRODUCTION

We consider multi-robot applications where teams of
robots must operate in a nondeterministic environment to
accomplish complex high-level behaviors. Examples include
search-and-rescue and surveillance missions, where individ-
ual robots must be deployed to different parts of a building or
other workspace to search for victims or look for intruders.
In most cases, the specific task assigned to each robot is
unimportant, as long as every task is accomplished; we
thus consider a team of cooperative, homogeneous robots.
Our main contribution is a framework for protocol synthesis
for such multi-robot systems performing high-level tasks
described in Linear Temporal Logic (LTL).

Previous work on multi-robot task allocation, including
market-based approaches [5], does not address the problem
of nondeterminism in the environment. Recent work has
solved the task allocation and planning problem concurrently
in a centralized fashion [12], but does not consider tasks in-
volving nondeterminism, patrol-type behaviors and reaction
to external events. The authors in [3] provide a partially de-
centralized solution to multi-robot coordination in partially-
known environments, where the problems of task assignment,
trajectory planning and safe control are concurrently solved
in the presence of communication constraints. Our work
extends the class of high-level robot tasks accommodated,
allowing reactive temporal logic specifications rather than
just a goal configuration for the team. In contrast with [3],

*This work was supported in part by the TerraSwarm Research Center,
one of six centers supported by the STARnet phase of the Focus Center
Research Program (FCRP) a Semiconductor Research Corporation program
sponsored by MARCO and DARPA.

1V. Raman is with the California Institute of Technology, Pasadena, CA
91125, USA vasulcaltech.edu

1

we explore a centralized approach, but discuss possible steps
towards decentralization in future work.

Unlike previous temporal logic synthesis approaches such
as [7], [6], which deal with multi-robot path planning,
we consider reactive behaviors, wherein the system must
respond to gathered sensory information. Reactive synthesis
for LTL enables us to handle a wide variety of tasks, beyond
mere safety and reachability. While LTL synthesis is in
general prohibitively expensive, the Generalized Reactivity
(1) (GR(1)) fragment admits synthesis with manageable com-
putational complexity [9]. This paper builds on recent work
on synthesis of reactive switching protocols [8], where the
objective was to determine a control strategy for switching
amongst a family of differential equations to satisfy a GR(1)
specification. Similar to [8], the only control input in our
work is the mode of the switched system, which codifies the
task allocation. However, while the abstractions considered
in [8] are over-approximations of the dynamics, we focus on
deterministic abstractions where every discrete transition can
be implemented in the physical domain.

By construction, the existence of a solution to the discrete
synthesis problem we present guarantees the existence of
a switching protocol that, when implemented at the con-
tinuous level, ensures that the multi-robot system behaves
as specified at runtime. The synthesized protocols can react
to possibly adversarial environment events, including exoge-
nous disturbances on the continuous dynamics of the robots.
We describe how we can combine our high-level plans with
existing multi-robot feedback controllers such as those in [3],
[2], and see that concurrent task reassignment and planning
allows the solution of otherwise infeasible problems. We
illustrate these ideas in simulation, with applications to
region surveillance in response to the detection of an intruder.

II. PROBLEM STATEMENT

We first introduce the notation and models used, and
formalize the problem addressed. Much of the notation
mirrors [8] and [3].

A. Linear Temporal Logic (LTL)
Syntax: Let II be a set of atomic propositions. LTL
formulas are defined by the recursive grammar:
pu=ml0leVe|OpleU e,

where 7 € II, — is negation, V is disjunction, () is “next”,
and U is a strong “until”. Conjunction (A), implication (=),
equivalence (<), “eventually” () and “always” ((J) are
derived from these operators.

Semantics: The truth of an LTL formula is evaluated over
infinite sequences of states, which can be thought to represent
executions of a finite state machine representing the system.
A state corresponds to an assignment of truth values to all
propositions 7 € II. Given an infinite sequence of these states
o, the statement o |= ¢ denotes that o satisfies the formula
@ at the first position. The statement o = Ap for A =
(O,0,$,0<>) denotes that ¢ is satisfied at the second
position, at every position, at some position, and infinitely
often in o, respectively. Let A be a finite state machine whose
states are labeled with truth assignments to IT. Then A is said
to satisfy ¢ if, for every execution o of A, o = ¢. The reader
is referred to [4] for a formal definition of the semantics.

B. Multi-Robot Switched Systems

Consider a team of N robots A = {a; | i = 1,..., N}
in a shared, bounded, nondeterministic environment with N
distinct tasks. The team has the configuration or state z(t) =
[l‘ll‘g...l‘]\/],.ﬁi € X; C Rd, with dynamics

@i(t) =ui(t),i=1,..,N. (1)

Here x(t) € X C R4 is the system state at time .

Let G be a set of goal configurations; for simplicity, we
assume that |G| = N goals, and at any given time, each robot
is assigned a unique goal'} We represent the task assignment
as a permutation p € Py, where Py is the set of all
bijections of {1,..., N} onto itself: p = pips...px assigns
task p; € {1,2,..., N} to agent i. We allow all permutations
of the tasks on the team of robots (i.e. any robot can complete
any task). The resulting switched system dynamics are

B(t) = for(x(t)), 2

where f; ;) refers to a distinct piecewise smooth control
input for each permutation o(t).

Here, we view o as a switching signal taking values in
Pn; o(t) may depend on z(t) as well as ¢. Given a set of
initial states Xy C X and initial modes Py C Py, solutions
to (2) are pairs (z,0) that satisfy for all ¢ > 0 and
(2(0),0(0)) € Xo X Py. In the above formulation, o is the
only controllable variable. Each mode represents a set of pre-
designed behaviors for the robot team, i.e. motion towards
pre-specified goals. Our objective is to automatically synthe-
size a multi-robot switching protocol such that solutions of
the resulting switched system satisfy (by construction) a
given LTL specification. If a change in the environment is
detected, the system can react by possibly switching modes;
the resulting behavior should satisfy the LTL specification.

We now define the satisfaction of LTL formulas by con-
tinuous signals, following the notation in [8]. Let X be a
set of states and IIx be a finite set of propositions: each
mx € Ilx is characterized by a subset of X in which it is
true, and the set of all possible subsets of IIx is denoted

'If there are more goal regions than robots, then the task assignment is
no longer a permutation, but an injection from robots to goals. If there are
fewer goal regions than robots, we can add uniquely indexed but identical
new goals representing the disjunction of all the regions in the workspace.
Both cases are easily accommodated in our approach

21x Let hx : X — 2% be an observation map such that
hx(z) = {rx € IIx : € 7x}, ie., hx(x) is the set of
propositions in IIx that hold in z. A continuous-time signal
is a function s : R* — X. Intuitively, the word generated by
a signal is the sequence of sets of propositions satisfied as it
evolves over time, as obtained from the observation map hx;
see Definition 4 in [8] for a formal definition. The signal s
satisfies an LTL formula ¢, written s = ¢, if and only if the
word it produces satisfies ¢.

C. Environment

In this paper, we use “environment” to refer to the factors
that are relevant to the operation of the multi-robot system,
but are not part of the dynamics modeled in (I)) or (). These
include potentially adversarial factors not controlled by the
system, e.g., hazards, doors, traffic lights, etc. Formally, we
assume that the environment state can take values in some
set Z, and that there exists an observation map hy : Z — &£
which maps states in Z to some finite set £ of observations.
Real-time properties of the environment are captured using
environment signals, i.e. functions ¢ : Rt — Z.

Following [8], we define an environment transition system
Te := (€, &y, —) that captures all possible changes in the en-
vironment; this will let us encapsulate our knowledge about
the allowable environment behavior in the specification as an
environment assumption. Here £ is the aforementioned finite
set of observations, & C £ is a set of initial observations,
and —C & x & is a transition relation such that ¢ — ¢’
if and only if e # ¢’ and there exists some environment
signal ¢ and some 7 > 0 such that hz({(7)) = ¢ and
limy_,.— hz({(t)) = e. We also assume that we are given a
set of environment propositions II¢ and a labeling L, : £ —
2MTe: intuitively, £, labels e € £ with propositions that are
true in that state.

We can now define the trajectory of a multi-robot switched
system operating in and reacting to its environment:

Definition 1 (Definition 6 in [8]): A trajectory s : Rt —
X X Z x Py of the multi-robot switched system (2) and
its environment is a tuple s = (z,(,0), where (z,0) are
solutions to and ¢ is an environment signal.

The finite set of atomic propositions relevant to this system
is IT := IIx x II¢g x Py, where Il x is a finite set of proposi-
tions defined over the system state space X ; the observation
map is defined by h(z, z,p) = (hx (x), Lo(hz(2)), {p}).

Problem 1 (Multi-Robot Switching Synthesis): Given a
family of multi-robot controllers satisfying (I), a set of
goals G, permutations Py, an environment transition system
Te, and an LTL specification ¢ of the form ¢ = (9. = ¥s),
synthesize a reactive switching protocol o that generates
only trajectories s = (z,(, o) such that s = .

In the above formulation, ¢, encodes the assumptions on
admissible environment behavior, and ¢, encodes the desired
behavior of the system. Note that this problem statement is
in contrast with [3], where the authors seek a finite sequence
of switches that will guarantee that the system will achieve
a desired goal configuration: Problem |I| requires a reactive

qil
{door},

Fig. 1: Transition system 7. for an environment with one door,
which is initially open and can close or reopen at any time thereafter
(there are implicit self-loops on each state). Here £ = {qo,q1},

& = {a}, == {(q0,9), (90, q1), (a1, 90), (q1, 1) }.Le(q0) = {}.
and L.(q1) = {door}

protocol whose infinite executions fulfill an LTL formula,
including safety conditions in addition to the goals.
In Section [[I] we solve Problem [I] via the following steps:

« defining a discrete abstraction of the system dynamics
@) for each permutation p € Py, and transitions
between them based on which switches can be imple-
mented,

o formulating a discrete synthesis problem on this finite
abstraction and the LTL task specification,

« synthesizing a switching protocol by solving the discrete
synthesis problem, and

« implementing this switching protocol using continuous
controllers for each mode.

III. APPROACH

In this section, we describe our solution to Problem
elaborating on the steps listed in Section|lI} and discussing its
correctness and computational complexity. We demonstrate
the stages of the synthesis procedure using an example of
robots patrolling a workspace for intruders.

A. Discrete Abstraction

The relevant features of the continuous multi-robot control
problem are abstracted using a finite set of Boolean proposi-
tions. To capture the motion of the robots using the discrete
formalism of LTL, the workspace is partitioned into regions,
and Boolean propositions introduced to indicate each robot’s
location. Additional propositions capture other properties of
and events in the environment including, for example, the
presence of obstacles such as doors.

Given an environment model 7., a set of workspace
regions R, sets of robot agents .4 and goal regions G C R
each indexed by [V, the discrete abstraction consists of:

e every environment proposition m, € Il¢. Consider the
example environment transition system in Fig. [1} Then
proposition 74, is true if and only if the door is closed
(i.e. the environment is in state qi).

o T;_ to indicate the presence of robot ¢ in region 7 € R
(e.g., m,,, is true if and only if robot 1 is in the hall)
—here IIx = {m;, |i€{1,...N},r € R}.

e m, for every permutation p € Py (e.g., if there are 3
goal regions and 3 robots, then 723 is true if and only
if each robot ¢ is assigned to region ¢ for ¢ = 1,2, 3).

We partition these propositions into a set of environment

propositions X, and a set of robot-controlled propositions
Y. The only robot-controlled variables in this setting are the
permutations p € Py. Thus, Y = Py, and X = Ilg U IIx.

O robot 1
ri r3 r5
r2 r4 ré
robot 2@

Fig. 2: Workspace for Example |1| with initial position of the robots
marked and regions of possible intrusion shaded blue

Note that, as proposed in [10], we treat the location of each
robot as a sensed event, controlled by the environment. We
will add assumptions on how the environment can evolve
given an input (mode); nondeterministic disturbances in the
robot dynamics can be accommodated here.

We present a simple example with two robots for clarity of
presentation — the method extends to larger teams of robots.

Example 1: Consider the six-room workspace depicted in
Fig. @ where the rooms are labeled r{ —rg. There is a door
running down the length of the workspace, separating the
top rooms from the bottom. There are two robots, indicated
by circles: robot 1 starts in r; and robot 2 starts in rg. Each
robot has a sensor, that can sense whether the door is open; if
the door is closed, the robots cannot move from one side of
it to the other. In addition, each robot can sense the presence
of an intruder in each of ry or 75, which are both designated
“intrusion-sensitive” regions. The task specified is that when
an intruder is detected in one of these two regions, either
one of the robots goes to that region to investigate.

For simplicity, we assume that the door and intrusion-
detection sensors of both robots are identical, i.e. they can
be modeled by a single variable. There are two goal regions
in this task: G = {ra, 75}, so Py = {12,21}. Here,

« X = {ﬂ—intruderz s Tintruders ’/Tdoor}

U{m, |ie{1,2},re{1,2,3,4,5,6}}
o Y ={m,|pe{12,21}}: e.g. 12 indicates that robot 1
is assigned goal ro and robot 2 is assigned goal 5.

B. Task Specification

Given a discrete abstraction, a high-level task is specified
using an LTL formula over X U) . The specification governs
which modes the system can activate in each state, and
assumptions on how the environment-controlled variables
evolve. A specification can contain two types of properties:
safety properties, which guarantee that “something bad never
happens,” and liveness conditions, which state that “some-
thing good (always eventually) happens”. We consider tasks
specified as GR(1) formulas, i.e. of the form ¢, = s,
where g represents the desired multi-robot behavior, and
e encodes assumptions on the environment, as perceived
by the robots’ sensors. Each of ¢, and ¢, contains initial
(0%, ph), safety (%, ¢?) and liveness conditions (9, ©9).

The following is an excerptﬂ of the user-defined LTL
specification for the task in Example

2Some parts of the specification have been eliminated for clarity. E.g.,
note that since the progress each robot’s motion in the workspace is
independent, in order for the above specification to be realizable, the door
is assumed to never close while the robots are on the same side of it.

(Lplrl A\ ()027,6) #Initial (Environment)
(Robot 1 starts in rl, Robot 2 in r6)
(_‘ﬂ—intrudem N Tintruders N\ —|7Tdoor)#lnitial (Environment)
(Initially no intruders, open door)
(m12)
(Robot 1 is initially assigned goal 72,
Robot 2 is initially assigned goal 75)
A D(‘Plrl A O Tdoor = O _‘§01r2)
(If door closed, Robot 1 can’t move from 71 to r2)
A |:|(<p17‘2 A QO Tdoor = O P,)
(If door closed, Robot 1 can’t move from r2 to 1)

#Initial (System)

#Safety (Environment)

#Safety (Environment)

A D(@QTS A O Tdoor = O _‘<‘02T6)
(If door closed, Robot 2 can’t move from r5 to r¢)

A D((AOQ,-G A O Tdoor = O ﬁ(102,,,5)
(If door closed, Robot 2 can’t move from r¢ to r5)

A\ | <>(7rintruder2 = O(<P1T2 \ 902r2))
(If an intruder is detected in 72,

either Robot 1 or 2 should go to r2)

N O <>(7rintruder5 = O(gohs \Y P2,)) #Liveness (System)

(If an intruder is detected in 75,

#Safety (Environment)
#Safety (Environment)

#Liveness (System)

either Robot 1 or 2 should go to 75)

Since each robot can be in exactly one location at any
given time, the formula ¢; = m; A A, 4r iy Tepresents
robot 7 being in region 7. In addition to the user-defined
specification, there are several constraints automatically gen-
erated depending on the multi-robot motion controllers in
each mode of the switched system. These components of
the specification are now described in detail.

1) Multi-Robot Motion Controllers: The robot team’s
motion in the workspace is governed by the availability of
controllers to drive it to its current goal configuration. We
can use the approach presented in [3], [2] to synthesize
navigation functions for driving the team of robots from
any current configuration to the goal configuration for each
permutation ¢ € Py, based on the location of the other
robots and obstacles in the workspace. The approach involves
decomposing the configuration space into obstacle-free poly-
topes (where each polytope is associated with a region
combination based on where each robot is), and generating
local smooth feedback laws that drive the team of robots
from one cell to an adjoining one. These local controllers are
then sequenced using discrete graph search methods like A*
or incremental D* to reach the goal. The method is complete,
i.e. it is guaranteed to find a solution if one exists, i.e. if every
robot can achieve its current goal. These atomic controllers
can also be switched between immediately in response to
changes in the environment.

2) Sensor Safety Assumptions: The progress of the linear
feedback controllers for each robot is reflected in the discrete
abstraction in the form of safety constraints on where the
robots can move, given which mode is activated. So acti-
vating the mode that drives robot 1 to goal 75 and robot
2 to goal r5 will give rise to constraints on the robot’s
current and next location while the motion controller for

this mode is active. Therefore, given a goal configuration
for the team of robots, the atomic controller corresponding
to the current mode results in constraints on the discrete
environment-controlled variables indicating the region for
each robot. Regardless of the mode, we include the constraint
that, at each time step, each robot can only move between
adjacent rooms or stay in place. There are also proximity
constraints that enforce that the robots are not in the same
room as each other. The following safety conditions would
result for the workspace in Fig. [2}

adjacency for robot 4, ¢ € {1,2}
O(pi,, = (O @i, VO @i, VOeiy))

Pmotion —

AD(pir, = (O @i, VO@i, VOei,))
AN(piny = (O win, VO @i, VO @i, VOei.))
ANO(pi,, = (O @i, VO @i, VO@i,, VO i)
AD(pi,, = (O @iv, VO @irg VO Pirg))

AB(pirg = (O pin, VO @i VO pivg))
constraints forbidding robot co-location

AO \/?:1 (@17‘i A Vj;ei P2r,)

In addition, the activation of a specific mode enforces
progress toward the current goal configuration:

each robot’s motion under mode p = 12
O(p1,, Amz = (Oe1,, VOeP1,,))
AO(p2,4 Az = (O 2,4 VO @2,,)) A -

Pmode_transis —

The entire formula ¢p,0de_trans,, 1S omitted for space rea-
sons, but the above excerpt says that if mode p = 12 is
activated, then robot 1 is being driven towards r and robot
2 is being driven towards r5, so the environment variables
indicating the robot’s sensed location must change accord-
ingly. In the construction of multi-robot motion controllers
using the approach described in [2], these constraints can
be automatically generated from the discrete path used to
sequence local controllers. Note that if we wanted to model
nondeterministic disturbances that would cause the robots to
drift away from their path, we could incorporate these by
relaxing these assumptions on the environment.

3) Fairness Assumptions: In addition to the above safety
conditions, additional constraints on the environment are
required to ensure that if a robot is moving towards a specific
region, it will eventually get there (unless the door is closed).
This ensures that in the absence of adversarial obstacles,
every atomic controller eventually completes, i.e. that the
robots’ goal configuration is either changed or achieved. In
Example [T} we add the fairness conditions

| <>((I017‘1 A T12 N\ T Tgoor = O (Pl,‘z)
AO <>(¢2r6 A T12 A " Tdoor = O cpg%) A

Prair 12 —

This corresponds to the assumption that the atomic motion
controller corresponding to mode p = 12 will eventually
drive the robot from 7; to r2 as long as the door is not closed.
Again, these assumptions can be automatically constructed
from the discrete path between regions for each mode,
incorporating obstacles that may prevent robot motion.

The final addition to the system specification is the mu-
tual exclusion between the modes in Pp; in Example [1}
Omode_mutes = D((T12 V T21) A (212 V —T21))

Fig. 3: Excerpt of synthesized automaton for Example

Given a task specification ¢ = (p. = ps) of the form
described in Section the new GR(1) specification used
to synthesize a controller (with added multi-robot motion
constraints, sensor assumptions and fairness conditions) is:

Pnew = (SOE A Pmotion A /\ @mode,trans,, A /\ @fairp)
pPEPN PEPN
(:> Ps A Somode,mutex)

C. Synthesis

An LTL formula ¢ is realizable if there exists a finite
state strategy that, for every finite sequence of truth assign-
ments to the environment-controlled propositions, provides
an assignment to the system-controlled propositions such
that every infinite sequence of truth assignments generated
in this manner satisfies ¢. The synthesis problem is to
find a deterministic finite state automaton (if one exists)
that encodes this strategy, i.e. whose executions satisfy (.
When restricted to LTL formulas of type GR(1), such as
those described in Section the algorithm introduced in
[9] permits synthesis in time polynomial in the size of the
state space; this synthesis algorithm was extended in [11] to
accommodate a wider class of specifications with the same
polynomial time complexity.

Fig. |3| depicts a single transition of the automaton synthe-
sized for the above specification using the GR(1) synthesis
algorithm in [11] using the SLUGS synthesis tooﬂ; the full
automaton has 310 states and took 0.93s to synthesize on
a 1.3 GHz Intel Core i5 processor with 8GB of RAM.
Each state of the automaton is labeled with the truth as-
signment to the system-controlled propositions in that state,
and each transition is labeled with the truth assignment to
environment-controlled propositions required for that transi-
tion to be enabled. Incoming transitions therefore determine
the truth value of the environment propositions for each state.
In the state labeled with p1s, robot 1 is heading towards goal
ro and robot 2 is heading towards goal r5. In the depicted
transition, we see the system switch modes from pi2 to po;
when the door is closed and an intruder is sensed in r5 (as
indicated by incoming edge labels door and intruder.5).

D. Continuous Execution

If synthesis succeeds, a controller that implements the
corresponding continuous behavior is constructed by viewing
the resulting automaton as a hybrid controller, with a tran-
sition between two states achieved by the activation of one
or more low-level continuous controllers corresponding to
each proposition. The atomic controllers used must satisfy

3available at https:/github.com/ltmop/slugs

the bisimulation property [1], which ensures that every
change in the discrete system model can be implemented
in the continuous domain. As described in Section |III-B}
the atomic controllers for each mode are obtained using a
construction such as the one in [2], and the specification is
augmented with environment safety and liveness assumptions
derived from a discrete transition graph representing the
behavior of these atomic controllers. Therefore, every change
in the discrete model can by design be implemented in
the continuous domain (i.e., the atomic motion controllers
are guaranteed to drive each robot towards the current goal
configuration regardless of initial state).

Given an automaton synthesized using the above approach,
the multi-robot motion controller corresponding to the cur-
rent mode is invoked to initiate the robot team’s motion
towards the current goal configuration. Note that a switch
to any mode is possible at any time. Transitions in the
automaton are instantaneous, as they correspond to activation
of a new mode or a discrete event in the environment,
including the arrival of a robot in a new region. Moreover,
every continuous state maps to a unique discrete state, and so
the mode to be activated in response to an environment event
is always determined for a given strategy. As the automaton
is correct by construction, this continuous execution ensures
that the LTL specification is met on the resulting executions.

E. Computational Complexity

We use a computationally expensive centralized approach
in order to guarantee fulfillment of the specified task in a
reactive environment, but still save computation over previ-
ous approaches. For example, the desired behavior could be
obtained by using the approach in [10], where the control
input is not just a switching mode, but the activation of a
controller that drives the team from some initial configuration
to some goal configuration. However, that approach adds one
variable to) for the activation of a motion controller to
each region for each robot, rather than just one for each
permutation of robot goals — this is a total of N * |R]
variables in contrast with one for each of N! modes. The
strategy synthesis scales exponentially in the number of
sensor propositiong’| i.e. by a factor of 21!, If the number of
goals N is small compared to the number of regions |G| (as is
usually the case), the approach presented in this paper yields
a significant reduction in computational complexity. The
example in the next section will demonstrate this difference.

IV. EXAMPLE

Fig. 4| summarizes a MATLAB simulation of the automaton
synthesized for Example |1} a video accompanies this paper.
As the purpose is to illustrate the high-level switching
control, the naive controllers used to simulate motion for
each robot set the robot’s velocity towards the centroid of
the next region on the shortest discrete path to the goal. In
future work, these will be replaced in physical experiments
with atomic controllers such as those constructed in [2], [3].

4this can be reduced in practice using bit vectors to encode mutually
exclusive propositions

Robots 1 and 2 are represented by a red square and
green triangle respectively. Larger markers on the trajectories
indicate points where the robots change state, either by
moving to a new region, or as the result of a sensor event.
Fig @ shows the initial condition, with robot 1 in r; and
robot 2 in rg. The door is initially open. In Fig f(b)] the
robots have both started moving towards their goals, 2 and
T35, respectively. In Fig the door has closed before the
robots achieve their goals. In Fig. (d)} an intruder is sensed
in 79. Since robot 1 is now on the wrong side of the door,
the system switches modes, assigning robot 2 the goal of 7o
instead. With these new goals, robot 2 starts moving towards
ro through r4, while robot 1 moves to r5 through rs, as in
Fig. (e}l In Fig fi(T)] the robots have arrived in their new
goal regions. The ability of the two robots to switch goals
is critical to meeting this specification. If the door were
reopened, each robot would be assigned the closest goal,
making the synthesized protocol robust to an adversarial
environment that repeatedly opens and closes the door.

(a) Initial state — robot 1 is in 71, robot (b) Robots 1 and 2 move towards their

2isin rg respective goals, ro and 75
2 2
| g 3 s | por | <] s
2 2
l doorclosed WM doorclosed |
o o
r2 ra e r2 4 [ok

* INTRUDER!
o 05 1 15 2 25 3 % 05 1 15 2 25 3
(c) The door closes before the robots (d) An intruder appears in 75. The
can attain their respective goals. The robots switch goals and start moving
robots stop moving towards the door. towards their new goals

| ar! mo 3 5 B ar R "
= =
g4 doorclosed | g4 doorclosed |
B -
| |
2 PR w % o 144 w %
- B
: -
INTRUDER! INTRUDER!

))
o 08 1 15 2 25 3 o 08 1 15 2 25 3

(e) Robot 1 moves towards 75, Robot 2 (f) Robot 1 arrives in 75, Robot 2 ar-
moves towards 7. rives in 7ro.

Fig. 4: Simulation of controller synthesized for Example

Our solution uses || = 2, while the approach in [10] uses
|Y| = 2% |R| =26 = 12. This represents a reduction in
the state space for synthesis by a factor of 2!°. Moreover,
our approach still allows robots to move simultaneously,
succeeding in the cases described in [10] where requiring
that at most one robot move at a time is too conservative.

V. CONCLUSION

We have demonstrated a reactive synthesis approach to
controlling a team of homogeneous robots in a centralized
fashion. Our approach allows dynamic goal reassignment
via switching modes, and guarantees that the high-level task
specification is met despite an adversarial environment. For
this work, we assumed that all robots could communicate.
Future work will consider the case where only robots that are
within a specified, known communication range can com-
municate, thereby allowing centralized control only within
these ranges. This will reduce computation for large teams
of robots in large environments, where the communication
range is much smaller than the size of the workspace.

In modeling a multi-robot system as a switched system,
we have made explicit the separation between the physical
controllers and the robots themselves. Each mode of the
system maps a set of abstract or “virtual” robots to physical
robots, providing the associated controllers. This can be
likened to the mapping of virtual machines to physical
ones for computation, which allows migration of resources
as needed to address new tasks. Here, the abstraction of
a switched system of virtual robots allows migration of
physical controllers in order to achieve a high-level behavior.
Virtual machines have revolutionized the way data centers
and large computer clusters are managed, and greatly im-
proved their efficiency and ability to react to changes in the
operating environment. We contend that similar advantages
apply for systems of interchangeable robots, and intend to
explore our approach on larger systems in the future.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

REFERENCES

R. Alur, T.A. Henzinger, G. Lafferriere, and G.J. Pappas. Discrete
abstractions of hybrid systems. Proceedings of the IEEE, 88(7):971-
984, 2000.

Nora Ayanian, Vinutha Kallem, and Vijay Kumar. Synthesis of feed-
back controllers for multiple aerial robots with geometric constraints.
In IROS, pages 3126-3131, 2011.

Nora Ayanian, Daniela Rus, and Vijay Kumar. Decentralized mul-
tirobot control in partially known environments with dynamic task
reassignment. In NecSys, pages 311-316, Santa Barbara, CA, 2012.
Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model
Checking. MIT Press, 1999.

M Bernardine Dias, Robert Michael Zlot, Nidhi Kalra, and An-
thony (Tony) Stentz. Market-based multirobot coordination: A survey
and analysis. Technical Report CMU-RI-TR-05-13, Robotics Institute,
Pittsburgh, PA, April 2005.

M. Kloetzer and C. Belta. Automatic deployment of distributed teams
of robots from temporal logic motion specifications. Robotics, IEEE
Transactions on, 26(1):48-61, 2010.

Marius Kloetzer and Calin Belta. Temporal logic planning and control
of robotic swarms by hierarchical abstractions. IEEE Transactions on
Robotics, 23(2):320-330, 2007.

Jun Liu, Necmiye Ozay, Ufuk Topcu, and Richard M. Murray. Synthe-
sis of reactive switching protocols from temporal logic specifications.
1IEEE Trans. Automat. Contr., 58(7):1771-1785, 2013.

Nir Piterman, Amir Pnueli, and Yaniv Sa’ar. Synthesis of reactive(1)
designs. In VMCAI, pages 364-380. Springer, 2006.

Vasumathi Raman and Hadas Kress-Gazit. Synthesis for multi-robot
controllers with interleaved motion. In /CRA, pages 43164321, 2014.
Vasumathi Raman, Nir Piterman, and Hadas Kress-Gazit. Provably
correct continuous control for high-level robot behaviors with actions
of arbitrary execution durations. In ICRA, pages 4075-4081, 2013.
Matthew Turpin, Nathan Michael, and Vijay Kumar. Concurrent
assignment and planning of trajectories for large teams of interchange-
able robots. In ICRA, pages 842-848, 2013.

	Introduction
	Problem Statement
	Linear Temporal Logic (LTL)
	Multi-Robot Switched Systems
	Environment

	Approach
	Discrete Abstraction
	Task Specification
	Multi-Robot Motion Controllers
	Sensor Safety Assumptions
	Fairness Assumptions

	Synthesis
	Continuous Execution
	Computational Complexity

	Example
	Conclusion
	References

