Towards Minimal Explanations of Unsynthesizability for High-Level
Robot Behaviors

Vasumathi Raman' and Hadas Kress-Gazit?

Abstract— High-level robot control has recently seen the
application of formal methods to the automatic synthesis of
correct-by-construction controllers from user-defined specifi-
cations. When a specification fails to yield a corresponding
controller, existing techniques provide feedback on portions of
the specification that cause the failure, but at a coarse gran-
ularity. This work provides techniques for extracting minimal
explanations of such failures. The approach is shown to provide
refinement of the feedback on several example specifications.

I. INTRODUCTION

Recent advances in the use of formal methods for robot
control have enabled non-expert users to command robots to
perform high-level tasks using a specification language in-
stead of programming the robot controller (e.g., [1], [3], [8],
[10], [12], [18]). Several approaches automatically synthesize
correct-by-construction controllers from a description of the
desired robot behavior and assumptions on its operating
environment [12], [18]. If an automaton implementing the
specification exists, one is returned. However, for specifi-
cations that have no implementation (i.e. the specification is
unsynthesizable), the process of pin-pointing the cause of the
problem can be a frustrating and time-consuming process.

There are two ways in which a specification can be
unsynthesizable — it is either unsatisfiable, in which case
the specified robot behavior cannot be achieved in any
environment, or it is unrealizable, in which case there exists
an admissible environment (satisfying the specified assump-
tions) that prevents the robot from achieving its specified
behavior. While previous work identified sub-portions of the
specification that contribute to the problem [16], [17], the
feedback provided was of a coarse granularity, determined by
the structure of the specification. The work presented in this
paper builds upon these approaches to identify unrealizable
cores — minimal subsets of the desired robot behavior that
cause it to be unrealizable. The analysis makes use of the
counterstrategy (the adversarial environment strategy that
prevents the robot from succeeding), and covers unsatisfiable
specifications as a special case of unrealizability.

II. PRELIMINARIES

The high-level tasks considered in this work involve a
robot operating in a known workspace. The robot reacts to

*This work was supported by NSF CAREER CNS-0953365, NSF Ex-
CAPE and DARPA N66001-12-1-4250.

V. Raman is with the Department of Computer Science, Cornell Uni-
versity, Ithaca, NY 14853, USA vraman at cs.cornell.edu

2H. Kress-Gazit is with the Sibley School of Mechanical and Aerospace
Engineering, Cornell University, Ithaca, NY 14853, USA hadaskg at
cornell.edu

events in the environment, which are captured by its sensors,
by choosing from a set of actions including moving between
adjacent locations. The tasks specified may also include
infinitely repeated behaviors such as patrolling a set of
locations. Examples of such high-level tasks include search
and rescue missions and the DARPA Urban Challenge.

A. Controller Synthesis

Using formal methods to construct a controller for a robot
operating in a continuous domain requires a discrete abstrac-
tion and a description of the task in a formal specification
language. The discrete abstraction in this work consists of a
set of propositions X whose truth value is controlled by the
environment and read by the robot’s sensors, and a set of
action and location propositions) controlled by the robot;
the set of all propositions AP = X' U)Y. The value of each
T € AP is the abstracted binary state of a low-level black box
component. More details on the discrete abstraction used in
this work can be found in [12].

The formal language used for high-level specifications in
this work is Linear Temporal Logic (LTL) [15]. LTL formulas
are constructed from atomic propositions 7= € AP according
to the following recursive grammar:

pu=n|-0love|Ooe|eUe,

where — is negation, V is disjunction, () is “next”, and
U is a strong “until”. Conjunction (A), implication (=),
equivalence (<), “eventually” () and “always” (O) are
derived from these operators. The truth of an LTL formula
is evaluated over sequences of truth assignments to the
propositions in AP. Informally, formulas () ¢, ¢ and ¢
express that @ is true in the next position, every position, and
some position in the sequence, respectively; formula <> @
is thus satisfied if ¢ is true infinitely often. For a formal
definition of the semantics, see [6].

The task specifications in this work are expressed as LTL
formulas of the form @ = @, = @y, with @, = @, A @}, A 3,
where @), !, and @ for p € {e,s} represent the initial
conditions, transition relation and goals for the environment
(e) and the robot (s) respectively. LTL is appropriate for
specifying robotic behaviors because it provides the ability
to describe changes in the truth values of propositions over
time. To allow users who may be unfamiliar with LTL
to define specifications, tools like LTLMoP [7] include a
parser that automatically translates English sentences from
a pre-defined grammar into LTL formulas. There are two
primary types of properties allowed in a specification — safety

properties, which guarantee that “something bad never hap-
pens”, and liveness properties, which state that “something
good (eventually) happens”. These correspond naturally to
LTL formulas with operators “always” (LJ) and “eventually”
(). Formulas ¢! and ¢! above are referred to as safety
formulas, and consist of a conjunction of formulas of the
form JA;, where each A; is a boolean formula over AP and
OAP={QOm= | m € AP}. Conversely, ¢ and ¢; are called
liveness formulas, and consist of conjunctions of formulas
O<> B;, where each B; is a boolean formula over AP.

An LTL formula ¢ is realizable if, for every time step,
given a truth assignment to the environment propositions for
the next time step, there is an assignment of truth values
to the robot propositions such that the resulting infinite
sequence of truth assignments satisfies ¢. The synthesis
problem is to find an automaton that provides this assign-
ment. For a synthesizable specification ¢, synthesis produces
an implementing automaton, enabling the construction of
a hybrid controller producing the desired high-level, au-
tonomous robot behavior. The reader is referred to [14] and
[12] for details of the synthesis procedure, and to [7], [12]
for a description of how the extracted discrete automaton is
transformed into low-level robot control.

B. Environment Counterstrategy

When controller synthesis fails, the specification is called
unsynthesizable. As described in Section I, unsynthesizable
specifications are either unsatisfiable (e.g., if the task requires
patrolling a disconnected workspace), or unrealizable (e.g.,
if in the above task, the environment can disconnect an
otherwise connected workspace, such as by closing a door).
In either case, the robot can fail in one of two ways: either
it ends up in a state from which it has no valid moves
(termed deadlock), or the robot is always able to change
state according to the specified safety requirements, but one
of its goals (livenesses) is unreachable (termed livelock).

For unsynthesizable specifications, the counterstrategy
synthesis algorithm in [11] can be used to extract a strategy
for the environment, which provides sequences of environ-
ment actions that prevent the specified robot behavior. The
counterstrategy takes the form of a finite state machine:

Definition 1 An environment counterstrategy for LTL for-
mula ¢ is a tuple Aiu = (Q7Q07X7y75e7557YX77y7Ygoals)
where
e Q is a set of states.
e Qo C Q is a set of initial states.
o X is a set of inputs (sensor propositions).
o YV is a set of outputs (location and action propositions).
o 8,:0— 2% is the deterministic input transition relation,
which provides the input propositions that are true in
the next time step given the current state q, and satisfies
@
o 8,:0x2% =22 js the (nondeterministic) robot transi-
tion relation. If 8;(q,x) = 0 for some x €27 ,q € Q, then
there is no next-step assignment to the set of outputs that

BBl 2 o r4‘l\. rsl“'\l‘. rB\-i

Fig. 1: Map of robot workspace in Specification 1

satisfies the robot’s transition relation @', given the next
set of environment inputs x and the current state q.

o Yx:Q — 2% is a transition labeling, which associates
with each state the set of environment propositions that
are true over incoming transitions for that state (note
that this set is the same for all transitions into a given
state). Note that if ¢ € 8(q,x) then yx(q') = x.

e ¥y :0 —2Y is a state labeling, associating with each
state the set of robot propositions true in that state.

o Yeoals : Q — 77" labels each state with the index of a
robot goal that is prevented by that state. During the
counterstrategy extraction, every state in the counter-
strategy is marked with some robot goal [11].

The counterstrategy provides truth assignments to the
input propositions (according to the transition function &,)
that cause either livelock or deadlock. The inputs provided
by O, in each state satisfy ¢!, meaning that for all g € Q,
the truth assignment sequence (Yx(q)U ¥y(q),Yx(8(q)))
satisfies A; for each conjunct A; in ¢, (note that A; is a
formula over two consecutive time steps).

III. PROBLEM STATEMENT

Previous work produced explanations of unrealizability
in terms of combinations of the specification components
(i.e., initial conditions, safeties and goals). However the true
conflict often lies in small subformulas of these components.

Specification 1 Unrealizable specification — livelock

1) Robot starts in start with camera
(Tstart N Tecamera- part of (P;))
2) If you are sensing a person then do not r5
OO mperson = ~Omys), part of 8]
3) Always activate the camera (OO Teamera, part of @)
4) Visit the goal (O Mgpq, part of @F)

Consider Specification 1, in which the robot is operating
in the workspace depicted in Fig. 1. The robot starts at the
left hand side of the hallway (line 1), and must visit the goal
on the right (4). The robot should not pass through region
r5 if it senses a person (2), and should always activate its
camera (3). The environment can prevent the goal in (4) by
always activating the “person” sensor (Zperson), because of
the initial condition in (1) and the safety requirement in (2);
this is an example of livelock. The safety requirement in (3)
is irrelevant, and should be excluded from any explanation
of why this specification is unrealizable.

The algorithm presented in [17] will narrow down the
cause of unsynthesizability to the goal in 4. However, it
will also highlight the entirely of ¢!, declaring that the
environment can prevent the goal because of some subset
of the safeties; the exact subset is not identified.

This motivates the identification of small, minimal, “core”
explanations of the unsynthesizability. In the robotics liter-
ature, [9] find minimal revisions of specification automata,
by removing the minimum number of constraints from the
unsatisfiable specification. The work presented in this paper
differs in its objective, which is to provide feedback on
existing specifications, not rewrite them. Moreover, this work
deals with reactive specifications.

There has also been considerable prior work on unreal-
izable cores for LTL in the formal methods literature. The
authors of [5] propose definitions for helpful assumptions
and guarantees, and compute minimal explanations of un-
realizability by iteratively expelling unhelpful constraints.
Their algorithm assumes an external realizability checker,
and performs iterated realizability tests. The main advantage
over previous approaches of the work presented in this paper
is that it reduces the number of realizability checks required
for most specifications, as detailed in Section IV.

To identify and eliminate the source of unrealizability,
some works like [4], [13] provide a minimal set of addi-
tional environment assumptions that, if added, would make
the specification realizable; on the other hand, the work
presented in this paper takes the environment assumptions
as fixed, and the goal is to compute a minimal subset of the
robot guarantees that is unrealizable.

Let ¢; < ¢, denote that ¢ is a subformula of ¢,.

Definition 2 Given a specification ¢ = @, = @, an unreal-
izable core is a subformula @} = @, such that Q. = @; is
unrealizable, and for all @, < @}, Q. = @, is realizable.

Problem 1 Given an unrealizable formula @, return an
unrealizable core @;.

Note that unrealizable cores of ¢ may not be unique.

IV. UNREALIZABLE CORES

In this section, unrealizable components of the robot
specification @y are analysed based on the environment coun-
terstrategy, narrowing down the cause of unrealizability for
both deadlock and livelock. Consider a counterstrategy Ag =
(0,00,X,Y,8:, 8, Yx, Yy Yeouls) for formula ¢. It allows the
following characterizations of deadlock and livelock:

o Deadlock There exists a state in the counterstrategy
such that there is a truth assignments to inputs, for
which no truth assignment to outputs satisfies the robot
transition relation. Formally,

dg e Q|5s(q’ Se(Q)) =0

o Livelock There exist a set of states C in the counter-
strategy such that the robot is trapped in C no matter
what it does, and there is some robot liveness By in ¢f
that is not satisfied by any state in C. Formally,

3C C Q.By < ¢f|Vq € C.q - B, 8(q,8.(q)) CC

A. Unrealizable Cores for Deadlock

Consider Specification 2 on the workspace in Fig. 1.
The robot starts in 5 with the camera on (1). The safety
conditions specify that the robot should not pass through the
region marked r5 if it senses a person (2). However, the robot
must stay in place if it senses a person (3). Finally, the robot
should always activate its camera (4). Here, the environment
can force the robot into deadlock by activating the “person”
sensor (Mpers0n) When the robot is in r5, because there is then
no way the robot can fulfil both (2) and (3).

The environment counterstrategy A, is as follows:

« 0=00={q1}

« X = {ﬂpermn}7 y - {ﬂrSaﬂcamem}

8@(‘11) = {”person}’ 5s(q17 {”permn}) = 0’ 8s(q17@) =0

o Yx (611) = {”person}y Yy(éh) = {ana ncamera}

L ’)/g()alx(ql) =1

Notice that ¢; is a deadlocked state, because given the
input 7,50, in the next time step, there is a conflict between
safety conditions 2 and 3, and the robot has no valid move
(hence 65(‘11) {”person}) = @)

For g € Q, define the propositional-representation of q as:

V’state(CI): /\ XA /\ XA /\ YA /\ -y

x€yx(q) x€X\yvx(q) yery(@) yeX\ry(9)

In the ¢xample above, Ware(q1) = Tperson N s A Tcamera-

Let n' represent the value of m € AP at time
step i, and AP' = {n' | ® € AP}. For example, in
Specification 2, AP = {&0,, ., W5, Aymera} and AP' =
{0 erson T)5s Woamera } - Given LTL specification @, g € Q such
that &;(g,0.(q)) = 0, construct a propositional formula over
APYUAP! as follows:

Viead (@ 9) = Vo Ql/7)A N\ A N\
2€68(q) 2€X\ 8 (q)

AN [On/x!|[m/x°),

where @[a/b] represents ¢ with all occurrences of subfor-
mula a replaced with b. Intuitively, this formula represents
the satisfaction of the robot safety condition in the next step
from state g, with the additional restriction that the input
variables be bound to the values provided by J.(¢g) in the
next time step. Notice that by the definition of deadlock,
Wiead (¢, @) represents an unsatisfiable propositional formula.

In the above case, Wyeaq(q1,9) =

0 0 0 1 1 0
T ATUAT AT AT amera N Py

perslon clamera | ‘person ¢ 0
/\(nperson = jﬂ:rS) A (nperson = (ﬂ'rs e 7'L'r5 A))7

where (pf,,lm is a formula over AP'UAP™! representing the
topological constraints on the robot motion at time i (i.e.
which rooms it can move to at time i+ 1 given where it is
at time #, and mutual exclusion between rooms).

Note that if g is a deadlocked state, then by definition
Waeaa(q, @) is unsatisfiable, since there is no truth assignment
to the robot propositions in the next time step that satisfies
©!. An off-the-shelf satisfiability (SAT) solver can be used to
verify unsatisfiability of W..q4(g, @); this work uses PicoSAT
[2]. The same SAT solver can then be used to find a minimal

unsatisfiable subformula, which is then mapped back to the
originating portions of the safety and initial formulas.
In the above example, the SAT solver finds the core of
Wyead(q, @) as the subformula
T AT oyson A (TS

person person

=) A (T o = (Tl & 7).

person

This is because the two statements combined require the
robot to both stay in r5 and not be in 15 in time step 1. This
gives us a core explanation of the deadlock caused in state g.
Taking the union over the cores for all the deadlocked states
provides a concise explanation of the cause of deadlock.

Specification 2 Core-finding example — deadlock

1) Robot starts in r5 with camera ((p§)1
75 A\ Teamera
2) If you are sensing person then do not r5 (¢!):
D(O Tperson = O ﬂrS)
3) If you are sensing person then stay there (@f):
D(O npersun = (O Tstart <= Tstart A O Ty < n'r2~~-))
4) Always activate your camera (¢!):
D O ﬂcamem

B. Unsatisfiable Cores for Livelock

Consider Specification 1 again. If the environment action
is to always set M,er0n, then the safety requirement in 2
enforces that the robot will never activate 7,5, because it is
explicitly forbidden from doing so when sensing a person.
This is livelock because the robot can continue to move
between start and r2 —4. Counterstrategy Aj, is as follows:

o Q: {LIl7q2aq3aq4}a QO = {ql}

« X = {nperson}a y - {ﬂsmm T2, T3,y .., T8, ”goah ﬂcamem}

hd VC] S Q7 56(Q) = {”permn}
{q1,q2} ifi=1
5s(‘]i7{7rperson}) = {q#l»q%q#rl} for2<i<3
{g3,94} ifi=4
05(q,0) =0 for g € Q
° vq S Qa Yx (q) - {ﬂpermn}~
) D) — {n-camerm ”start} ifi=1
Yy(%) B { {ncamemanr,'}’ for2<i<4

o Vi, Yg0ais(qi) = 1 (since there is only one goal).

In the case of livelock, we know there exists a set of states
C in the counterstrategy that trap the robot, locking it away
from the goal. Without loss of generality, C consists of cycles
of states. In the specifications of the form considered in this
work, robot goals are of the form OCB; for 1 <i<n,
where each B; is a propositional formula over AP = X U
Y. Suppose the algorithm in [17] identified goal <> B; as
the goal responsible for livelock. Let Oy be the set of all
states in Ag, that prevent goal By, and let C; be the set of
maximal k-preventing cycles in Qg, i.e. cycles that are not
contained in any other cycle in Q; (modulo state-repetition).
Let Ci = (¢).q},....q}) and C> = (g3,43,-...q7) be cycles,
and define C; < G, if a < b and there is some offset index

o in C, such that all of C; is found in C; starting at o, i.e.
‘Iil — q%m)) mod (b-+1) for all 0 <i < a. This expresses that C)
is a strict sub-cycle of C,. Then formally,

Or = {q S Q|’Ygoa1s(9) = k}
C]?” = {(Qqula--w‘Z!)WOSi§l74i6Qk7
Vi<1,qiy1 € 65(qi, 0.(4i)), 9i # qiv1,
q0 € 65(q1,6(q1)),q0 # a1},
G = {CecylvC’ecd,c £C'}.

In Specification 1, there is only one goal, D<>7rg,,al. C =
(91,92,93,94,93,92) is a maximal 1-preventing cycle.

Given an initial state g, a depth d and an LTL safety
formula @' over 7 € AP, there exists a propositional formula
v (9!,q) over Up<i<qs AP', constructed as:

v(¢f.q) AN\ elOn/z*[/x').

0<i<d

= lIfstate 717/ ”
This formula is called the depth-d unrolling of ¢! from g, and
represents the tree of length-d 41 truth assignment sequences
that satisfy ¢!, starting from g. Note that there are d + 1
time steps in a depth-d unrolling because each conjunct in
¢! governs two time steps. In the example, y¢ (¢!, q1) =
‘ 1 i+1 1
Stﬂl’t /\ ncamera /\ /\ (q)tlopo /\ n-cl‘a+mera /\ (n[lje;rson = ﬂ:rl';r))'
0<i<d

Given a cycle of states C = (qo,41,---,q1) € Ay, and a depth
d, construct a propositional formula y4.(C) over Up<;<q X',
where x' € X' represents the value of each input x € X' in
state g; moq (1+1) for 0 <i<d, as:

Vo= AC A wa A

0<i<d p€yx(dimod 1+1)) PEX\Yx(dimod (141))

).

This formula is called the depth-d environment-unrolling
of C, and represents the sequence of inputs seen when
following cycle C for d time-steps. In the example, the depth-

d environment unrolling of C is Y%(C) = Ag<i<y T erson-

Now, given an LTL safety specification ¢} over T € AP, a
goal By, a maximal k-preventing cycle Cy = (qo,q1,---,q1) €
Ck, and an unrolling depth d, construct propositional formula
Vi (B, Cr, @L) over Up<jcqy AP as:

Wl(fve(Bk’Ck’(P;) =
v (G AW (9l 90) A BR[O

Intuitively, this formula expresses the requirement that the
goal By be fulfilled after some depth-d unrolling of the safety
formula starting from state go, given the input sequence
provided by w4 (Cy) (note that this input sequence extends
to the final time step in the safety formula unrolling). Again,
this is an unsatisfiable propositional formula, and can be
used to determine the core set of clauses that prevent a
goal from being fulfilled. Taking the union of cores over all
C € Cy, gives a concise explanation of the ways in which the
environment can prevent the robot from fulfilling the goal.

n/x [/7).

pDI'Ch _"
kitcheni dining

deck
Fig. 2: Map of robot workspace for specifications in Section V

In the above example, V¢ (Teou,C1, @) =
E?tart A ﬂgamera A /\ ﬂ[l)erson
~ 0<i<d+] ' '
A /\ ((Ptlupu A ﬂcl';:nlzem A (nﬁ:—}}mn = _'ﬂg_l)) A ﬂgoal'
0<i<d

In the case of livelock, the choice of unroll depth d
determines the quality of the core returned. Recall that for
deadlock, the propositional formula W..q(g, @) is built over
just one step, since it is already known to cause a conflict
with the robot transition relation, and be unsatisfiable. The
unsatisfiable core of this formula is a meaningful unrealizable
core in this case because it provides the immediate reason for
the deadlock. For livelock, on the other hand, determining
the shortest depth to which a cycle C; must be unrolled to
produce a meaningful core is not obvious.

In the above example, for unroll depths less than or equal
to 8, the unsatisfiable core returned will include just the
environment topology, since the robot cannot reach the goal
from the start in 8 steps or fewer, even if it is allowed into r5;
however, this is not a meaningful core. Unrolling to depth
9 or greater returns the expected subformula that includes
/\ogigd(”ﬁrlson = ﬂn'gl). Automatically determining the
shortest depth that will produce a meaningful core remains a
research challenge. This minimum depth is often tied to the
number of regions in the robot workspace, and is usually easy
to estimate based on the diameter of the graph representing
the counterstrategy. However, no efficient, sound method is
known for determining this minimal unrolling depth, and for
the examples in this paper a depth of 15 time steps was used.

If the SAT-based analysis in this section returns a core
that does not capture the real cause of failure, alternative,
more computationally expensive techniques can be used to
return a minimal core. For example, the approach in [5] is
guaranteed to yield a minimal core, but requires repeated
calls to a realizability oracle, which may be expensive for
specifications with a large number of conjuncts.

Note that, since unsatisfiability is a special case of unre-
alizability (in which not just some, but any environment can
prevent the robot from fulfilling its specification), the above
analysis also applies to unsatisfiable specifications.

V. EXAMPLES

This section presents examples of the improved feedback
provided for unrealizable specifications. The examples pre-
sented previously appeared in [16], and this section demon-
strates the improvement of the proposed analysis over the
approach presented in that work.

A. Deadlock

Consider the specification in Fig. 3, where the robot is
operating in the workspace depicted in 2. The robot starts
in the porch. The safety conditions govern what it should
do when it senses a “person” (stay with them and radio for
help) or a “hazardous item” (pick up the hazardous item and
carry it to the porch). The robot should not return to the
porch unless it is carrying a hazardous item, and its goal is
to patrol all the other rooms.

The environment can cause deadlock by setting the person
sensor to true and the hazardous item sensor to false when the
robot is in the porch. Sensing a hazardous item results in the
robot activating the “pick_up” action, which in turn results in
the proposition “carrying_item” being set. Similarly, sensing
a person results in the robot turning on the radio. Now the
state in which both “radio” and “carrying_item” are true is
a deadlocked state, since there is no way to satisfy both the
safety conditions “If you are. activating radio or you were
activating radio then stay there” and “If you did not activate
carrying_item then always not porch” from this state.

Fig. 3(a) depicts the sentences highlighted by the algo-
rithm in [17]. Sentences in the specification are identified
by triangle-shaped markers in the left-hand margin. The
sentences highlighted in 3(a) include all initial (red) and
safety (blue) conditions, which forms a very large subset of
the original specification. On the other hand, Fig. 3(b) depicts
the much smaller subset of sentences highlighted by the
analysis in this paper (all in red). These sentences correspond
to the safety conditions that cause deadlock — removing any
one of them makes the specification synthesizable.

B. Livelock

Consider the specification in Fig. 4, also in the same
workspace. The robot starts in the deck and its goal is to visit
the porch. However, based on whether it senses a person or
a fire, it has to keep out of the kitchen and the living room,
respectively. Fig. 4(a) depicts the sentences highlighted by
the algorithm in [17], which includes all safety conditions
(red) in addition to the goal (green). This includes irrelevant
sentences, such as the one that requires the robot to always
turn on the camera. Fig. 4(b) depicts the core returned by
the analysis in this work — only those safeties that directly
contribute to keeping the robot out of the porch are returned.

VI. CONCLUSIONS

This paper presents techniques for analyzing high-level
robot specifications that are unrealizable, i.e. for which no
implementing controller exists because the environment can
prevent the desired robot behaviour. The approach is based
on finding minimal unsatisfiable cores for propositional
encodings of specific state sequences in the environment
counterstrategy. Examples show that the additional analy-
sis finds the minimal cause of unrealizability and ignores
irrelevant subformulas. Future work includes automatically
determining the depth for obtaining a meaningful core for
livelock, and exploring techniques that do not require explicit
state extraction of the counterstrategy automaton.

[1]

[2]
[3]

[4

=

[5

[t}

[6

=

[7

—

[8

=

[9

—

' | Specification Editol
File Edit Run Debug Help

| Specification Editol

File Edit Run Debug Help

Initial conditions
Env starts with false
Robot starts in porch with false

If you were in porch then do not hazardous_item

Define robot safety including how to pick up

Do pick_up if and only if you are sensing hazardous_item and
lyou are not activating carrying_item

arrying_item is set on pick_up and reset on drop

Po drop if and only if you are in porch and you are
hctivating carrying_item

1

2

3

4

5 # Assumptions about the environment
3

7

8

9

f you did not activate carrying_item then always not perch

f Define when and how to radio

Do radie if and only if you are sensing person

If you are activating radie or you were activating radie then
stay there

Always extinguish

20 # Patrol goals

21 Group is living, bedroom, deck, kitchen, dining

22 If you are not activating carrying_item and you are not
activating radie then visit all

23 if you are activating carrying_item and you are not
activating radie then visit perch

Compiler Log | LTL Qutput | Workspace Decomposition |

=====Done
ERROR: Spedification was | /unsatisfiable) for instantaneaus actions.

1
2
3
4
5
3
7
8
9

Initial conditions
Env starts with false
Robot starts in porch with false

Assumptions about the environment
If you were in porch then do not hazardous_item

Define robot safety including how to pick up

Do pick_up if and only if you are sensing hazardous_item and
you are not activating carrying_item

carrying_item is set on pick_up and reset on drep

Do drop if and only if you are in porch and you are
activating carrying_item

1T you did not activate carrying_item then always not porch

Define when and how to radie
o radie if and only if you are sensing person
I you are activating radie or you were activating radie then
stay there
Always extinguish

Patrol goals

Group is living, bedroom, deck, kitchen, dining
If you are not activating carrying_item and you are not
activating radie then visit all

if you are activating carrying_item and you are not
activating radie then visit perch

Compier Log | LTL Qutput | workspace Decomposition |

=Done

ERROR: Spedfication was Lnsynthesizable ./) for instantanecus actions.

(a) Sentences highlighted using approach in [17]

(b) Sentences highlighted using proposed approach

Fig. 3: Core-Finding Example: Deadlock

File Edit Run Debug Help

File Edit Run Debug Help

#Simple specification demonstrating liveness unrealizability
#Environment can win by alternating fire and person

Env starts with false
Robot starts with false
Robot starts in deck

isit perch

if you are sensing person then do not kitchen
if you are sensing fire then do not living
always not radie

14 always not (fire and perseon)

Compiler Log | LTL Output | Workspace Decomposition

Done
ERROR: Specification was unsynthesizable (unrealizable funsatisfiable) for instantaneous actions.

1
2
3
4
5
3
7
8
9

#Simple specification demonstrating liveness unrealizability
#Environment can win by alternating fire and person

Env starts with false

Robot starts with false

Robot starts in deck

\Visit porch

if you are sensing person then do not kitchen
if you are sensing fire then do not living

always not radie

always not (fire and person)

Compiler Log | LTL Qutput | Workspace Decomposition

= Done

ERROR: Specification was unsynthesizable (unrealzable/unsatisfiable) for instantaneous actions.

(a) Sentences highlighted using approach in [17]

(b) Sentences highlighted using proposed approach

Fig. 4: Core-Finding Example: Livelock

REFERENCES

Amit Bhatia, Lydia E. Kavraki, and Moshe. Y. Vardi. Sampling-Based
motion planning with temporal goals. In ICRA, pages 2689-2696,
2010.

Armin Biere. PicoSAT Essentials. Journal on Satisfiability (JSAT),
4(2-4):75-97, 2008.

Leonardo Bobadilla, Oscar Sanchez, Justin Czarnowski, Katrina Goss-
man, and Steven LaValle. Controlling Wild Bodies Using Linear
Temporal Logic. In RSS, Los Angeles, CA, USA, June 2011.
Krishnendu Chatterjee, Thomas A. Henzinger, and Barbara Jobstmann.
Environment Assumptions for Synthesis. In CONCUR, pages 147—
161, Berlin, Heidelberg, 2008. Springer-Verlag.

Alessandro Cimatti, Marco Roveri, Viktor Schuppan, and Andrei
Tchaltsev. Diagnostic Information for Realizability. In VMCAI, pages
52-67, 2008.

Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model
Checking. MIT Press, 1999.

Cameron Finucane, Gangyuan Jing, and Hadas Kress-Gazit. LTLMoP:
Experimenting with Language, Temporal Logic and Robot Control. In
IROS, pages 1988 — 1993, 2010.

Sertac Karaman and Emilio Frazzoli. Sampling-Based Motion Plan-
ning with Deterministic @-Calculus Specifications. In CDC, 2009.
Kangjin Kim, Georgios E. Fainekos, and Sriram Sankaranarayanan.
On the Revision Problem of Specification Automata. In /CRA, pages
5171-5176, 2012.

[10]

[11]

[12]

[13]
[14]
[15]

[16]

[17]

(18]

Marius Kloetzer and Calin Belta. A Fully Automated Framework for
Control of Linear Systems from Temporal Logic Specifications. IEEE
Transactions on Automatic Control, 53(1):287-297, 2008.

Robert Konighofer, Georg Hofferek, and Roderick Bloem. Debugging
Formal Specifications Using Simple Counterstrategies. In FMCAD,
pages 152-159, 2009.

Hadas Kress-Gazit, Georgios E. Fainekos, and George J. Pappas.
Temporal-Logic-Based Reactive Mission and Motion Planning. /IEEE
Transactions on Robotics, 25(6):1370-1381, 2009.

Wenchao Li, Lili Dworkin, and Sanjit A. Seshia. Mining Assumptions
for Synthesis. In MEMOCODE, pages 43-50, 2011.

Nir Piterman, Amir Pnueli, and Yaniv Sa’ar. Synthesis of Reactive(1)
Designs. In VMCAI, pages 364-380. Springer, 2006.

Amir Pnueli. The Temporal Logic of Programs. In FOCS, pages
46-57, 19717.

Vasumathi Raman and Hadas Kress-Gazit. Automated Feedback For
Unachievable High-Level Robot Behaviors. In /CRA, pages 5156—
5162, 2012.

Vasumathi Raman and Hadas Kress-Gazit. Explaining Impossi-
ble High-Level Robot Behaviors. IEEE Transactions on Robotics,
PP(99):1 -11, 2012.

Tichakorn Wongpiromsarn, Ufuk Topcu, and Richard M. Murray.
Receding Horizon Control for Temporal Logic Specifications. In
HSCC, pages 101-110, 2010.

