
Avoiding Forgetfulness: Structured English Specifications for
High-Level Robot Control with Implicit Memory

Vasumathi Raman1, Bingxin Xu and Hadas Kress-Gazit2

Abstract— This paper addresses the challenge of incorpo-
rating event memory into the automatic synthesis of hybrid
controllers for high-level reactive robot behavior. The goal is
to provide a natural, concise grammar for specifying high-level
tasks that require remembering past events, and to ensure that
the required memory is correctly updated during controller
execution. To this end, a structured English grammar for
specifying high level behavior is provided that automatically
performs memory operations, without requiring explicit def-
inition from the specification designer. This grammar admits
intuitive, unambiguous specifications for tasks that implicitly
use memory for purposes including non-repeated goals, strictly
ordered action sequences, etc. The proposed framework also
guarantees the correctness of memory operations during con-
tinuous execution. The approach is implemented within the
LTLMoP toolkit for reactive mission planning.

I. INTRODUCTION

High-level robot control has recently seen the application
of formal methods to automatically synthesize controllers
that achieve the specified behavior. These high-level behav-
iors include reacting to environmental events at runtime,
and temporally extended goals; such behaviors are often
required for applications like search and rescue missions
and autonomous driving. Most formal methods frameworks
for generating verifiable high-level control rely on a discrete
abstraction of the underlying system dynamics, use model
checking (e.g. [1], [2], [3], [4]) or efficient synthesis tech-
niques (e.g. [5], [6]) to generate control laws on this discrete
model, and transform them into provably correct low-level
robot controllers that achieve the specified behavior. The
desired properties are usually expressed using a temporal
logic, such as Linear Temporal Logic (LTL)[7].

Synthesizing controllers that satisfy reactive behaviors
requires specifications that describe the robot’s goals, as well
as assumptions on the environment it operates in. The gen-
erated robot controllers are guaranteed to satisfy the desired
specification in any environment that satisfies the modeled
environment assumptions. One challenge that emerges is the
specification of events to be remembered, whether external
(i.e. perceived in the environment) or internal (i.e. executed
by the robot). Since the synthesized controllers correspond
to finite state machines, they are Markovian, in that the
robot’s actions depend entirely on the current state and

This work was supported by NSF CAREER CNS-0953365, ARO MURI
(SUBTLE) W911NF-07-1-0216 and NSF ExCAPE

1V. Raman is with the Department of Computer Science, Cornell Uni-
versity, Ithaca, NY, USA vraman@cs.cornell.edu

2B. Xu and H. Kress-Gazit are with the Sibley School of Mechanical
and Aerospace Engineering, Cornell University, Ithaca, NY, USA {bx38,
hadaskg}@cornell.edu

the environment inputs. This requires that memory of past
events be directly encoded in the state. Explicitly specifying
memory operations in a high-level specification is not an
ideal solution in two respects: 1) it shifts the burden of
reasoning about memory requirements to the user; 2) even
with explicitly defined memory management, the system may
still fail to remember events during continuous execution of
the synthesized discrete controller. These two problems are
described in more detail with examples in Section III. This
paper addresses the challenge of automatically managing
memory operations given a specification that may not include
explicit memory management.

There are several approaches to using language for con-
trolling robots. These include frameworks for translating
instructions in unconstrained natural language to formal
goal descriptions and action scripts for robot navigation and
manipulation [8], [9], [10], and approaches that map high-
level instructions to sequences of commands that fill in the
missing information [11]. While the language used in this
paper is structured English rather than natural language,
this is the first work to address the automatic integration
of implicit memory operations when synthesizing a finite-
state robot controller for a high-level specification. The
memory management strategies described here are imple-
mented within Linear Temporal Logic MissiOn Planning
(LTLMoP)[12], [13], an open source, modular, Python-based
toolkit that automatically generates and implements hybrid
controllers corresponding to structured English specifications
describing high-level robot behaviors, using the approach
of [5]. The synthesized controllers can either be embedded
within a simulator or used with physical robots. The most
recent version of LTLMoP can be downloaded online1.

The paper is structured as follows. Section II provides
an overview of the controller synthesis and corresponding
specification language. Section III describes the problems
addressed by this paper. Section IV presents the proposed
grammar for implicitly specifying memory operations, and
Section V discusses measures to ensure correct memory
updates during continuous execution. Section VI illustrates
the robot behavior produced using the described approach
for a simple specification that uses event memory. The paper
concludes with a discussion of future work in Section VII.

II. BACKGROUND

This section discusses the underlying logical formalism
and specification language, an overview of the synthesis of

1http://ltlmop.github.com

provably-correct robot control from logical formulas, and a
description of the Linear Temporal Logic MissiOn Planning
(LTLMoP) toolkit [12].

A. Linear Temporal Logic (LTL)

The underlying logical formalism used to synthesize robot
controllers in this work is Linear Temporal Logic (LTL). LTL
is a modal logic that includes temporal operators, allowing
formulas to specify the truth values of atomic propositions
over time. LTL formulas are constructed from atomic propo-
sitions π ∈AP according to the following recursive grammar:

Syntax: Let AP be a set of atomic propositions. LTL
formulae are constructed recursively from π ∈AP as follows:

ϕ ::= π | ¬ϕ | ϕ ∨ϕ | ©ϕ |�ϕ | �ϕ

where ¬ is negation, ∨ is disjunction, © is “next”, � is
“always”, and � is “eventually” (the LTL “until” operator
U is omitted for this work).

Semantics: The truth of an LTL formula is evaluated
over infinite executions of a finite state machine representing
the system: a state is an assignment of truth values to
propositions in AP, and an execution is an infinite sequence
of truth assignments to π ∈ AP. A finite state machine
satisfies a formula if every execution satisfies it. For a formal
definition of the semantics, the reader is referred to [7].

B. Discrete Abstraction

Applying formal methods to inherently continuous prob-
lems in robotics requires a discrete abstraction of the problem
to enable description with a formal language. This work
considers robot specifications using the GR(1) fragment of
LTL [14]. The workspace is modeled as a two dimensional
polygonal environment, and the possible motion of the robot
in the workspace is abstracted using a graph where each node
represents a region and edges represent transitions between
adjacent regions.

For specifications on this discrete abstraction, the atomic
propositions consist of a set X = {x1, ...,xm} of environment
propositions corresponding to abstract sensor information
(e.g. “object detected”), and a set Y = {r1, ...rn,a1, ...,ak}
of robot propositions corresponding to the robot location
(ri is true when the robot is in region i) and actions a j
(e.g.“raise the flag”). The fragment of LTL considered in
this work follows [5], where formulas are of the form ϕ =
(ϕe⇒ϕs); ϕe is an assumption about the sensor propositions,
and thus about the behavior of the environment, while ϕs
represents the desired robot behavior; specifications belong
to a fragment of LTL that allows efficient synthesis [14].

The following example illustrates a representative high-
level robot task and the associated discrete abstraction.

Example 1 Consider a robot waiting tables at a restaurant.
At the beginning of each day, the robot enters the restaurant
and goes straight to the check-in-desk. It greets the first
shipping truck of the day at the loading dock (but need not
worry about subsequent incoming trucks). It is required to
put on a waiter’s tuxedo only after having met the truck.

When customers arrive, the robot moves between the three
dining rooms to wait for an order. Every time an order is
made, it goes to the kitchen and places the order with the
chefs. The restaurant map is depicted in Fig. 4.

The robot has three sensors, which sense shipping trucks,
customers and the completion of an order – it is assumed
that the customer will signal the end of their order to
the robot. These sensors correspond to propositions πtruck,
πcustomer and πorder respectively. The robot also has one
action in addition to motion, which is putting on its tuxedo,
πwear tux. In addition, there are seven possible locations: the
entrance, check in desk, loading dock, kitchen, and three
dining rooms, corresponding to πentrance, πdesk, πdock, πkitchen,
πroom1 , πroom2 , and πroom3 , respectively.

The robot task can be precisely defined using LTL formu-
las over this set of propositions. For example, the requirement
“always wear a tuxedo” would translate to �πwear tux. Addi-
tional formulas constrain the possible motion of the robot in
the workspace, as determined by the topological constraints,
and to account for the fact that the robot can be in exactly
one location at any given time.

C. Structured English Task Specification in LTLMoP

LTLMoP [12] is a Python-based, open-source toolkit al-
lowing users to control physical and simulated robots by
specifying high-level instructions in structured English. To
allow non-technical users to write robot specifications even
if they are unfamiliar with LTL, LTLMoP includes a parser
that automatically translates English sentences belonging
to a defined grammar into LTL formulas [15], [16]; the
grammar includes conditionals, goals, safety sentences and
non-projective locative prepositions such as “between” and
“near.” Structured English circumvents the ambiguity and
computational challenges associated with natural language,
while still providing a more intuitive medium of interaction
than conventional programming languages.

LTLMoP’s structured English grammar allows the user to
define desired robot behaviors (including reactive behaviors,
e.g., if you see a truck, unload it) and specify assumptions
about the behavior of the environment (e.g., a truck will
never be seen in the kitchen) using a more natural formalism
than the underlying LTL. There are two primary types of
properties allowed in a specification – safety properties,
which guarantee that “something bad never happens”, and
liveness conditions, which require that “something good
(eventually) happens”; these correspond respectively to LTL
formulas with � (always) and � � (always eventually). This
paper enriches the structured English grammar by allowing
specifications that express implicit memory of events, as
described in Section IV.

D. Control Generation

Given a task specification and a description of the
workspace topology, LTLMoP applies the efficient synthesis
algorithm introduced in [14] to construct an implementing
automaton (if one exists). If no such automaton exists, the

user is presented with information about the cause of the
unsynthesizability [13], [17]. If an automaton is obtained, it
is transformed into a hybrid controller which can be deployed
on physical robots or in simulation. Details of the synthesis
and the resulting hybrid controller can be found in [5], [12].

Conceptually, the process of transforming a high-level task
described in structured English in LTLMoP to correct control
inputs for a robot is composed of three stages:

1) Parsing the structured English sentences into an LTL
formula defined over an abstraction of the problem.

2) Transforming the logic formula into an automaton.
3) Executing the automaton as a hybrid controller, where

a transition between states corresponds to executing a
set of low-level continuous controllers.

III. PROBLEM FORMULATION

The task specification described in Example 1 in natural
language contains sentences requiring the robot to remember
events and, if necessary, to later forget them in order to react
to subsequent events.

Consider the requirement, “Every time an order is made,
go to the kitchen”. In the structured English grammar defined
in [15], the closest match to this specification is “If order then
go to kitchen”, which in turn corresponds to the LTL formula
� �(πorder =⇒ πkitchen). However, the semantics of this
LTL formula require that either πkitchen holds infinitely often
or ¬πorder holds infinitely often. If the robot senses πorder
in a single time-step but not in any subsequent ones, the
above liveness requirement is satisfied whether or not it goes
to the kitchen. Therefore the synthesized automaton may
not include any states in which the robot is in the kitchen.
Moreover, even if the automaton does include a transition to
the kitchen when an order is sensed, continuous execution
may result in this order being forgotten. For example, in a
physical experiment, if the customer signals the end of an
order, the robot will sense πorder and begin moving to the
kitchen. However, if the robot loses sight of the customer on
the way to the kitchen, it will no longer sense πorder, and
will therefore forget that it has to go to the kitchen.

This observation motivates the use of implicit memory for
each relevant event. As with everything else in the discrete
problem abstraction, this memory will be represented using
propositions that are set on the associated event. Note
that it is possible to modify the above specification using
the original grammar in [15] to explicitly specify changes
in memory by introducing a new proposition morder (and
the corresponding Structured English phrase “memo order”).
Listing 4 shows the additional structured English and corre-
sponding LTL that accomplishes this.

Definition 1 (Memory Propositions) A memory proposi-
tion is a Boolean proposition m φ whose value corresponds
to the occurrence of event φ .

The purpose of memory propositions is to record that a
specific event has occurred in the execution. Once it becomes
true, the memory proposition stays true until its resetting

Listing 1 Specification demonstrating the additional specifi-
cation sentences required to avoid forgetfulness

Do memo order if and only if you are sensing order
or you were activating memo order

�(©morder ⇐⇒ (©πorder ∨morder))
If you are activating memo order then visit kitchen

� �(morder =⇒ πkitchen)

condition (if any) is met. The basic structure of a memory
proposition without a resetting condition is:

�(©m φ ⇔ (©φ ∨m φ))

Once φ is true, the memory proposition m φ turns true and
stays true to record this event. In the example above, morder
is a memory proposition whose value responds to πorder.

As shown above, the grammar introduced in [15] requires
the user to explicitly introduce memory propositions and
specify the events that cause them to be true. This places
the burden of reasoning about what memory needs to be
recorded on the user.

Problem 1
• Enrich the structured English specification grammar

with constructs that allow unambiguous but implicit
memory operations.

• Given a specification S in this enriched grammar,
automatically generate a set of memory propositions
M and the set of LTL formulas Φ corresponding to
the implicit memory operations specified.

A second problem stems from the continuous execution
of the synthesized controller described in Section II. Given
a discrete transition between two states, the motion controller
for driving the robot between regions is activated first.
The remaining controllers for other propositions that change
value over the transition are only activated (or deactivated)
once the robot has entered the new region. Assuming the
non-motion action controllers are instantaneous, this ensures
that the discrete transition is safely executed. Consider what
happens when the robot senses an order in room1, while
moving to room2. The memory proposition morder would
not be set until after the robot has crossed into room2. The
transition from room1 to room2 is non-instantaneous, but as
long as the robot is sensing an order until it crosses into
room2, the memory proposition will be set (as in Fig. 1(a)).

However, this continuous execution paradigm can lead to
memory loss since the updating of memory propositions
is delayed until the robot has moved to the new region.
Consider what happens if the robot stops sensing the order
when still in room1 (Fig. 1(b)). The memory proposition
morder will never be set, and this order will be forgotten.

Problem 2 Given a specification S, the corresponding mem-
ory propositionsM and LTL formulas specifying the memory
operations Φ, modify Φ to ensure that every mφ ∈M is set in
response to φ during continuous execution of the synthesized
automaton.

Type What to remember? Structured English (S) LTL (M,Φ)
1 Condition has happened Once Θcond then Θreq sa f e from now on �(m φcond ⇒ φreq sa f e)∧

�(©m φcond ⇔ (©φcond ∨m φcond)
After Θcond then Θreq live repeatedly �� (m φcond ⇒ φreq live)∧

�(©m φcond ⇔ (©φcond ∨m φcond)
2 Requirement has happened Θreq (at least once) �� (m φreq)

�(©m φreq⇔ (©φreq∨m φreq)
3 Requirement has happened While Θcond then Θreq (at least once) ∆(φcond ⇒ m φcondφreq)

under certain condition �(©m φcond φreq⇔ (©φreq∧φcond ∨m φreq))
4 Memo is set on Θ1 After/once Θ1 then Θreq until Θ2 ∆(m φ1φ2 ⇒ φreq)

and reset on Θ2 �(©m φ1φ2⇔ ((©φ1∨m φ1φ2)∧¬©φ2)
*1 ’Only’+cond Only once Θcond then Θreq sa f e from now on LTL in Type 1 +

Only after Θcond then Θreq live repeatedly �((¬©m φcond)⇒ (¬©φreq))
*2 requirement + ’only once’ Eventually Θreq live only once LTL in Type 2 + �(m φreq⇒ (¬©φreq))
*3 requirement under condition If Θcond then eventually Θreq live only once LTL in Type 3 + �(m φcond φreq⇒¬©φreq)

+ ’only once’ If Θcond then Θreq sa f e only once
*4 Memo is self-reset when After each time Θcond , ∆(m φcondφreq⇒ φreq)

the requirement is met Θreq (at least once) �(©m φcondφreq⇔ ((©φcond ∨m φcondφreq)∧
¬©φreq)

*5 Condition-Requirement After the first time Θcond , �(©m φcond ⇔ (©φcond ∨m φcond))
memos on both sides Θreq (at least once) �(©m φcond φreq⇔ ((©φreq∧©m φcond)

∨m φreq)
∆(m φcond ⇒ m φcond φreq)

TABLE I: Syntax and Grammar

(a) Original transition (b) Forgetfulness

Fig. 1: Forgetfulness with continuous execution

IV. STRUCTURED ENGLISH WITH IMPLICIT MEMORY

This section describes the additional constructs added to
the structured English grammar for automatically generating
and using implicit memory propositions. The new grammar
affords users the expressive power to imply the use of several
kinds of memory propositions, based on which the robot
is constrained to remember events in the history of both
environment and robot behaviors. The presented constructs
extend the grammar described in [15].

A. Structured English Grammar

The syntax and semantics of the new grammar constructs
are listed in Table I. The constructs are grouped into Types,
labeled by the first column of the table. Types 1-4 define the
four basic types of implicit memory propositions, classified
based on the events remembered. Types *1-*5 introduce
derived memory operations that use the four basic types;
details are described in Section IV-B.

The second column of the table explains the events to
be remembered. Types 1-2 are complementary – Type-1
propositions remember that a condition has been satisfied,
while Type-2 propositions remember that a requirement has

been fulfilled. Type-2 propositions are useful for specifying
non-repeated goals. For example, �� (πregion) will drive the
robot to visit the region infinitely often, while �((©m r)⇔
(m r ∨©πregion)) ∧� � (m r) will not result in repeated
behavior. Type-3 propositions remember that a requirement
has been fulfilled under a specific condition; this allows
specifying the same requirement for multiple conditions.
Type-4 propositions are like Type-1 propositions, but can be
set back to false by a second condition φ2. Note that if both
conditions are true, the corresponding Type-4 proposition
will be set to false.

The third column in the table lists the admissible structured
English grammar corresponding to each type of memory.
The symbol Θ represents structured English phrases of the
form,“you are activating action”, “visit region”, etc, that
conform to the grammar described in [15]. The composition
of multiple phrases connected by “and/or” is also acceptable.
Furthermore, this work extends the admissible form of Θ to
include perfect tense phrases such as “you have sensed/acti-
vated/visited sensor/action”, which correspond to the events
remembered by Type-1 and Type-4 propositions. Note that
in Types 2 and 3, the phrase “at least once” is optional
if following “visit/go to”, and “visit πregion” is translated
into �((©m r)⇔ (m r∨©πregion))∧� � (m r) in contrast
with the definition in [15]; the new grammar for repeatedly
visiting a region is “Repeatedly visit/go to region”.

The fourth column lists the equivalent LTL formula for
each sentence in the previous column. The symbol φ is a
Boolean formula over sensor, action and region propositions.
The structured English phrase Θname corresponds to the
LTL formula φname. The symbol ∆ can represent both �
and � �. Note that Type-1 propositions impose different
grammatical constraints on safety and liveness requirements
to reduce the ambiguity of the structured English. The other

types distinguish between safety and liveness requirements
based on keywords in Θ. Following the grammar in [15],
“do/activate/sense/in π” implies a safety requirement, and
“repeatedly visit/infinitely often do π” implies a liveness.

B. Derived Types

In Types *1-*3, the modifier “only” is introduced to
constrain either the condition or the requirement. If the
keyword “only” modifies the condition (’only’+ < cond >),
it requires the robot to perform the request only after the
condition has happened. On the other hand, if the keyword
modifies the requirement (< req > + ’only once’), it requires
that the robot fulfil the requirement only once, and prohibits
it from being performed again.

In Type 1, once the condition is met, the memory proposi-
tion becomes true and stays true forever. Type *4 introduces
a variation with self-resetting of the memory proposition: this
is a special case of Type-4 propositions, and allows speci-
fying scenarios in which the robot must fulfil a requirement
each time the condition is true.

Finally, Type *5 propositions combine Types 1 and 3,
and are introduced when directing the robot to fulfil a
requirement at least once if the condition has been fulfiled.

Consider the task described in Example 1. Using the
proposed (enriched) grammar, the specification is captured in
Listing 2. This concise, intuitive specification illustrates the
power of the proposed enriched structured English grammer.
The memory propositions created by parsing the specification
are: mcheck in, mtruck, mdock, mcustomer,order, morder,kitchen.

Listing 2 English specification with implicit memory

1 Go to check_in_desk.
2 After the first time you have sensed truck, go to

loading_dock.
3 Only once you have visited loading_dock then do

wear_tux from now on.
4 Group dining_rooms is room1, room2, room3
5 After you have sensed customer then visit all

dining_rooms until you are sensing order.
6 After each time you have sensed order, go to kitchen.

In comparison, the equivalent specification without im-
plicit memory propositions in Listing 3 (using the grammar
in [15]) is significantly longer (139 words vs. 56) and far less
readable. In general, explicitly specifying memory storage is
always less concise. For example, the single sentence in line
3 of Listing 2, “Only once you have visited the loading deck,
then do wear tux from now on”, requires the three sentences
in Lines 4, 6 and 7 in Listing 3.

V. GUARANTEEING MEMORY DURING EXECUTION

Recall Problem 2, which is an outcome of the execution
paradigm for the synthesized automaton. This problem can
be solved by introducing a “stay there” condition, which
forces the robot not to change location when changing
memory (Fig. 3(a)). In the example in Listing 4, an LTL
formula �(¬morder ∧©πorder =⇒ ©πr ⇐⇒ πr) would
be added to the specification for each room r. This “stay
there” condition can be automatically added to the LTL

Listing 3 Original English specification equivalent to List-
ing 2

1 Do memo_check_in if and only if you are in
check_in_desk or you were activating memo_check_in

2 Repeatedly visit memo_check_in
3 Do memo_truck if and only if you are sensing truck or

you were activating memo_truck
4 Do memo_dock if and only if you are in loading_dock or

you were activating memo_dock
5 If you are activating memo_truck then visit memo_dock
6 If you are activating memo_dock then do wear_tux
7 If you are not activating memo_dock then do not

wear_tux
8 Do memo_customer if and only if (you are sensing

customer or you were activating memo_customer) and
you are not sensing order

9 Group dining_rooms is room1, room2, room3
10 If you are activating memo_dock then visit all

dining_rooms
11 Do memo_order if and only if (you are sensing order or

you were activating memo_order) and you are not in
kitchen

12 If you are activating memo_order then visit kitchen

(a) Original transition (b) Forgetfulness

Fig. 2: Forgetfulness during self-resetting

specification whenever a memory proposition turns true; this
avoids the situation described above in which an event is
forgotten, because the memory proposition is set immediately
after sensing an order.

Consider the LTL specification in Listing 4, which uses the
enriched grammar described in this paper. This specification
prioritizes going to the kitchen over sensing an order – if
both are true in the same time step, morder,kitchen is not set,
as shown in Fig. 2(a). Fig. 3(b) shows that adding a “stay
there” condition when morder,kitchen is set causes the self-
resetting proposition morder,kitchen to be turned on and off
over separate time steps. This again avoids the memory loss
that occurs without the “stay there”, depicted in Fig. 2(b),
where morder,kitchen is never set if the motion to the kitchen
is aborted, and the robot proceeds to patrol room 2 with no
memory of the order.

Listing 4 Specification demonstrating the additional sen-
tences required to avoid forgetfulness

After each time you have sensed order, visit kitchen
�(©morder,kitchen ⇐⇒ ((©πorder ∨morder,kitchen)∧¬©πkitchen))
� �(morder,kitchen =⇒ πkitchen)

VI. SIMULATION OF SYNTHESIZED ROBOT BEHAVIOR

This section demonstrates a simulation of the robot behav-
ior synthesized in LTLMoP using the specification in List-
ing 2. The motion specified by Lines 1-2 of the specification

(a) Continuous Execution
(Fig. 1)

(b) Self-resetting (Fig. 2)

Fig. 3: Staying in place to avoid forgetfulness

(a) Lines 1 (white) and 2 (black) (b) Lines 5 (white) and 6 (black)

Fig. 4: Restaurant workspace and robot trajectories satisfying
Listing 2. Points represent events that change the truth values of
memory propositions, curves represent motion before (solid) and
after (dashed) the events

is shown in Fig. 4(a), and that of Lines 5-6 in Fig. 4(b). Line
3 (not illustrated) specifies that the proposition wear tux
stays false until mdock turns true. Line 4 declares rooms 1,
2 and 3 as a region group dining rooms.

In Fig. 4(a), Line 1 is shown by the white curve: the robot
starts at the entrance and moves to the check in desk. At
point A, the memory proposition mcheck in turns true and stays
true. The black curve fulfils Line 2: at point A, the robot
enters room 3 and sees a truck; πtruck and mtruck become true,
and the robot moves through room 2 towards loading dock.
At B, πtruck turns false while mtruck stays true; this doesn’t
influence the robot motion, as shown by the dotted curve. At
C, the memory proposition mdock turns true and stays true.

In Fig. 4(b), an instance of the motion resulting from
Line 5 is shown by the white curve. At point C, the sensor
proposition πcustomer becomes true while πorder is still false,
so the memory mcustomer,order becomes true, reminding the
robot to visit dining rooms. At D, πcustomer turns false but
mcustomer,order stays true, and the robot keeps patrolling the
dining rooms, as represented by the dotted curve. At E,
πorder turns true, which results in mcustomer,order going back
to false, and so the patrolling requirement is erased from
memory. πorder and morder,kitchen now become true, which
causes the robot to move towards the kitchen to satisfy
Line 6, as shown by the black curve. Observe that πorder
is changed to false right away since the order is no longer
observed, but this has no influence on the robot motion since
the memory proposition morder,kitchen is still true. At point F
in the kitchen, the memory morder,kitchen turns false, so that
the robot is ready to wait on another customer.

VII. CONCLUSIONS AND FUTURE WORK

This paper presents a structured English grammar for
specifying high-level tasks that require remembering past
events. It includes examples illustrating the expressive power
of this grammar, including a simulation of the resulting robot
behavior. It also describes measures to ensure correctness
of memory during the continuous execution of controllers
synthesized from specifications in the described grammar.
The enriched grammar is shown to reduce the length and
complexity of the user-defined specification needed to pro-
duce the same behavior. Future work will further enrich
the grammar to allow more complex memory operations,
including remembering sequences of events. Another future
direction is to improve the structured English grammar to
bring it closer to natural language, while still maintaining an
unambiguous interpretation for specifications.

REFERENCES

[1] M.Kloetzer and C.Belta, “A fully automated framework for control of
linear systems from temporal logic specifications,” IEEE Transaction
on Automatic Control, vol. 53, no. 1, pp. 287–297, 2008.

[2] Karaman and Frazzoli, “Sampling-based motion planning with deter-
ministic µ-calculus specifications,” in IEEE Conference on Decision
and Control (CDC), Shanghai, China, December 2009.

[3] A. Bhatia, L. E. Kavraki, and M. Y. Vardi, “Sampling-based motion
planning with temporal goals,” in IEEE International Conference on
Robotics and Automation. IEEE, 2010, pp. 2689–2696.

[4] L. Bobadilla, O. Sanchez, J. Czarnowski, K. Gossman, and S. LaValle,
“Controlling wild bodies using linear temporal logic,” in Proceedings
of Robotics: Science and Systems, Los Angeles, CA, USA, June 2011.

[5] H. Kress-Gazit, G. E. Fainekos, and G. J. Pappas, “Temporal-logic-
based reactive mission and motion planning,” IEEE Transactions on
Robotics, vol. 25, no. 6, pp. 1370–1381, 2009.

[6] T. Wongpiromsarn, U. Topcu, and R. M. Murray, “Receding horizon
control for temporal logic specifications,” in Hybrid Systems, 2010,
pp. 101–110.

[7] E. M. Clarke, O. Grumberg, and D. A. Peled, Model Checking. MIT
Press, 1999.

[8] J. Dzifcak, M. Scheutz, C. Baral, and P. W. Schermerhorn, “What
to do and how to do it: Translating natural language directives into
temporal and dynamic logic representation for goal management and
action execution,” in ICRA, 2009, pp. 4163–4168.

[9] C. Matuszek, D. Fox, and K. Koscher, “Following directions using
statistical machine translation,” in HRI, 2010, pp. 251–258.

[10] S. Tellex, T. Kollar, S. Dickerson, M. R. Walter, A. G. Banerjee, S. J.
Teller, and N. Roy, “Understanding natural language commands for
robotic navigation and mobile manipulation,” in AAAI, 2011.

[11] S. R. K. Branavan, L. S. Zettlemoyer, and R. Barzilay, “Reading be-
tween the lines: Learning to map high-level instructions to commands,”
in ACL, 2010, pp. 1268–1277.

[12] C. Finucane, G. Jing, and H. Kress-Gazit, “LTLMoP: Experimenting
with language, temporal logic and robot control,” in IEEE/RSJ Int’l.
Conf. on Intelligent Robots and Systems, 2010, pp. 1988 – 1993.

[13] V. Raman and H. Kress-Gazit, “Analyzing unsynthesizable specifica-
tions for high-level robot behavior using LTLMoP,” in CAV, 2011, pp.
663–668.

[14] N. Piterman, A. Pnueli, and Y. Sa’ar, “Synthesis of reactive(1)
designs,” in In Proc. Verification, Model Checking, and Abstract
Interpretation (VMCAI 06. Springer, 2006, pp. 364–380.

[15] H. Kress-Gazit, G. E. Fainekos, and G. J. Pappas, “Translating
structured english to robot controllers,” Advanced Robotics, vol. 22,
no. 12, pp. 1343–1359, 2008.

[16] H. Kress-Gazit and G. J. Pappas, “Automatic synthesis of robot
controllers for tasks with locative prepositions,” in ICRA, 2010, pp.
3215–3220.

[17] V. Raman and H. Kress-Gazit, “Automated feedback for unachievable
high-level robot behaviors,” in ICRA, 2012, pp. 5156–5162.

