Temporal Logic Robot Mission Planning for Slow and Fast Actions

Vasumathi Raman!, Cameron Finucane and Hadas Kress-Gazit?

Abstract— This paper addresses the challenge of creating
correct-by-construction controllers for robots whose actions
are of varying execution durations. Recently, Linear Temporal
Logic synthesis has been used to construct robot controllers
for performing high-level tasks. During continuous execution
of these controllers by a physical robot, one or more low-
level controllers are invoked simultaneously. If these low-level
behaviors take different lengths of time to complete, the system
will pass through several potentially unsafe intermediate states.
This paper presents an algorithm that either generates a hybrid
controller such that every continuous behavior of the robot is
safe, or determines at synthesis time that the behavior may
be unsafe. The proposed approach is implemented within the
LTLMoP toolkit for reactive mission planning.

I. INTRODUCTION

Robotics has seen an increase in the application of formal
methods techniques for constructing controllers for high-
level autonomous behaviors, including reactive conditions
and infinite goals [1], [2], [3], [4]. Tasks involving such be-
haviors include search and rescue missions and the control of
autonomous vehicles. The traditional approach to implement-
ing high-level behaviors is to hard-code the high-level control
and use path-planning and other low-level techniques during
execution; with this method, it is not always known a priori
whether an implementation fulfills the desired requirements.
Formal methods provide guarantees that the implemented
controller will produce the desired behavior.

Formal techniques that have been applied to high-level
robot planning include model checking [5], [1], [2] and
synthesis, in which a correct-by-construction controller is
automatically synthesized from a formal task specification
[31, [4]. Synthesis-based approaches take as input a discrete
abstraction of the robot workspace and a temporal logic spec-
ification of the environment assumptions and desired robot
behavior, and yield an automaton fulfilling the specification
on the abstraction if the task is feasible. This automaton is
viewed as a hybrid controller, calling low-level continuous
controllers to actuate transitions between discrete states.

Example 1 Consider an Aldebaran Nao robot, performing
a task in the lab [6]. The available actions for this robot
include motion of the arm (waving), a text-to-speech inter-
face, and walking; walking between regions of interest takes
significantly longer than any of the other actions.

This work was supported by NSF CAREER CNS-0953365, ARO MURI
(SUBTLE) W911NF-07-1-0216 and NSF ExCAPE

V. Raman is with the Department of Computer Science, Cornell Uni-
versity, Ithaca, NY, USA vraman@cs.cornell.edu

2C. Finucane and H. Kress-Gazit are with the Sibley School of Me-
chanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA
{cp£37,hadaskg}@cornell.edu

In the discrete abstraction of the above problem, the
robot’s state encodes the robot’s current location and whether
it is waving. Suppose the implementing automaton contains
a discrete transition from the state where the robot location
is region r; and it is not waving, to the state where the
robot location is rp and it is waving. This discrete transition
corresponds to executing two continuous controllers — one
for motion and one for waving; the controller for waving
takes less time to complete execution than the motion be-
tween rooms. In general, a single transition between states in
the discrete problem abstraction requires executing low-level
controllers with different completion times. The continuous
implementation of the synthesized hybrid controller in [3]
may result in a delayed response to events in the environ-
ment, and in unsafe continuous executions (Section III), even
though the discrete automaton is provably correct.

This observation motivates a controller synthesis proce-
dure that ensures safety of continuous execution for every
discrete transition, while still allowing immediate reaction
to the environment. This paper presents an algorithm that
either generates a reactive hybrid controller such that every
continuous behavior of the robot is safe, or determines
at synthesis time that the behavior may be unsafe; the
algorithm handles a class of specifications corresponding to
a fragment of Linear Temporal Logic. This is the first work
to address the challenges of continuous execution using low-
level controllers of different execution times. The described
approach is implemented within the Linear Temporal Logic
MissiOn Planning (LTLMoP) toolkit [7].

II. PRELIMINARIES

Applying formal methods tools to the robot control prob-
lem requires (a) a discrete abstraction of the problem in
which the continuous reactive behavior of a robot is de-
scribed in terms of a finite set of states, and (b) a temporal
logic formalism for the specification, which in this work is
Linear Temporal Logic (LTL) [5]. This section provides de-
tails on these components, as well as the synthesis algorithm.

A. Linear Temporal Logic

Syntax: Let AP be a set of atomic propositions. LTL
formulae are recursively constructed from 7 € AP according
to the grammar: @ :=7 | =@ | Ve | Oe |0 | ¢, where
- is negation, V is disjunction, () is “next”, [J is “always”,
and <> is “eventually”. The LTL operator I/ (“until”) is
omitted for this work. Boolean constants True and False are
defined as True = 7V —7 and False = — True. Conjunction
(N), implication (=-) and equivalence (<) are derived.
Semantics: The truth of an LTL formula is evaluated over

executions of a finite state machine representing the system.
A state is an assignment of truth values to all propositions
7 € AP. An execution o is viewed as an infinite sequence of
these states, and ¢ |= ¢ denotes that ¢ satisfies formula ¢@:

e 0= o iff @ is true in the second position in ©.

« 0 EUo iff @ is true at every position in o.

o« 0 =< @ iff @ is true at some position in ©.

o 0 =0 @ iff @ is true infinitely often in ©.
A finite state machine A satisfies ¢ if for every execution
o of A, o |= ¢. For a formal definition of the semantics,
the reader is referred to [5]. LTL is well-suited to specifying
safety (‘“‘something bad never happens”) and liveness (“‘some-
thing good eventually happens”) properties of high-level
behavior: these correspond to LTL formulas with operators
O and < respectively (the fragment of LTL used in this
work supports liveness conditions of the form [J<> instead).

B. Discrete Abstraction and Task Specification

The discrete abstraction of the high-level robot task
consists of a set of propositions X whose truth value is
determined by the robot’s sensors and controlled by the envi-
ronment (sensors and environment are used interchangeably
in this paper), and a set of action and location propositions Y
controlled by the robot (also referred to as “the system”). X
and) are sometimes called the input and output propositions
respectively. £ C) denotes the set of location propositions.
The value of each m € X U is the abstracted binary state
of a low-level black box component. For example, sensor
propositions correspond to thresholded sensor values, and
robot location propositions correspond to the robot’s location
with respect to a partitioning of the workspace.

Example 2 Consider the workspace depicted in Fig. 4. The
robot has one sensor, which senses a person (the correspond-
ing proposition is Tperson), and one action, which is to turn a
camera on or off (Teamera)- In addition, there are two possible
locations, r1 and ry (7, Ty,), which are adjacent. The robot
starts in room r; with the camera off. When it senses a
person, it must turn on the camera. Additionally, the robot
is required to visit room ry infinitely often.

Here X = {Zperson} and Y = {Zcamera, Tr, , M, }. Since the
robot can be in exactly one of rj,r, at any given time, the
formulae ¢, = m, A—7,, and @,, = T,, A7, are used to
represent the robot being in r; and r, respectively. The task
in Example 2 corresponds to the following LTL specification:

Pry N Tcamera
(Robot starts in region r1 with the camera off)
/\ D(O np@rSUVl @ O chamera)
(Activate the camera if and only if you see a person)
A OO(en)
(Go to r2 infinitely often)

The possible motion of the robot in the workspace is
determined by adjacency of the regions and the existence
of controllers that will drive the robot from one region to
another. This information is automatically encoded in the
logic specification as a formula over location propositions,
defining legal transitions between adjacent regions.

Fig. 1: Synthesized automaton for Example 2.

C. Synthesis

Given a task specification and a description of the
workspace topology, this work considers formulae of the
form ¢, = ¢@,, where @, encodes assumptions about the
environment’s behavior and ¢, represents the desired robot
behavior. ¢, and @, each have the structure @, = @A QLA @5,
Os = @ A @l A @f. The initial conditions ¢! and ¢’ are
non-temporal Boolean formulae over X and) respectively,
transition relations @ and ¢ represent safety assumptions
on the environment and restrictions on the system, and ¢
and (p§ represent liveness assumptions on the environment
and desired robot liveness behaviors, respectively.

An LTL formula ¢ is realizable if, for every time step,
given a truth assignment to the environment propositions for
the next time step, there is an assignment of truth values
to the robot propositions such that the resulting infinite
sequence of truth assignments satisfies ¢. The synthesis
problem is to find an automaton that encodes these assign-
ments, i.e. whose executions satisfy ¢.

Definition 1 An automaton is a tuple A = (Q,Qp, X,), 9,
Yx,Vy) where

o Q is a set of states.

e Qo C Q is a set of initial states.

o X is a set of inputs (sensor propositions).

o YV is a set of outputs (location and action propositions).

e §:0x2% = QU{L} is the deterministic transition
relation. Informally, if 6(q,x) = L, then the set of
environment inputs x is disallowed in state q.

o Vv :Q — 2% is a transition labeling, which associates
with each state the set of environment propositions that
are true over incoming transitions for that state (note
that this set is the same for all transitions into a given
state). Note that if ¢’ € 8(q,x) then yx(q') = x.

e Yy :0 —2Y is a state labeling, associating with each
state the set of system propositions true in that state.

Define y(q) = yx(q) Uyy(q) for g € Q. Given a sequence
of states 0 = ¢oqiq2... where go € Qp, define I'(o) =
Y(0)7(q1)7(q2).... Let Sx(q) = {x € 2% | 8(q,x) # L},
8y(q,x) = 1y(8(g,x)), and 6(q) = {5(g,x) | x € 6x(q)}.

Definition 2 Given ¢ = (Q. = @), automaton Ay =
(Q,00,X,Y.6,7x,Yy) realizes ¢ if Vo = qoq192... € Q¥
such that go € 0o and. ;11 € 3(), T() = 9.

When restricted to LTL formulas with the form described
above, the algorithm introduced in [8] permits synthesis in
time polynomial in the size of the state space. Fig. 1 depicts
the automaton synthesized for the above specification.

D. Continuous Execution

Given an automaton that implements a specification in
a discrete abstraction of the problem, it remains to create
a controller that implements the corresponding continuous
behavior. For this, the automaton is viewed as a hybrid
controller, wherein a transition between states is achieved by
the activation of one or more atomic continuous controllers
corresponding to each robot proposition. Consider Example
2, and the synthesized automaton in Fig 1. Consider the
highlighted transition between states gg, in which the robot
is in 7| with the camera off and no person sensed, and ¢,
in which the robot has sensed a person and is in r, with the
camera on. To execute this transition when a person is sensed
in go, the hybrid controller described in [3] first activates a
low-level motion controller to drive the robot from r to r;
(changing the values of 7, and 7,,), and then calls another
low-level controller to turn on the camera (changing T.gmera)
once the robot has crossed the boundary between r; and r;.

The atomic controllers used satisfy the bisimulation prop-
erty [9], which ensures that if the discrete robot model
satisfies an LTL formula, then the continuous model also
satisfies the same formula (e.g., the motion controllers are
guaranteed to drive the robot from one region to another
regardless of the initial state within the region). The feedback
controllers presented in [10] and [11] are among several
that satisfy this property. The reader is referred to [3] for
a complete discussion of the hybrid controller, and to [7] for
details on the incorporation of atomic controllers in LTLMoP.

III. PROBLEM FORMULATION

In the discrete automaton generated by the above con-
struction, several system propositions may change value
over a single discrete transition, requiring the invocation of
low-level controllers that take different amounts of time to
execute. For clarity of presentation, assume that there are
two kinds of low-level controllers — fast and slow — taking
times #r and fg respectively, with 7 < tg. More specifically,
assume that motion is the only slow controller. The set of
system propositions is partitioned based on the speed of
the corresponding low-level controllers, into Vs = £ and
Yr =V\L (i.e. location and non-location propositions). In
Example 2, Yr = {Tcamera} and Ys = {7, 7, }.

Given a discrete transition between states (q,q’), if there
exist location propositions 7T, € Y- (q) and T € Y- (q') where
r # 1/, then the motion controller for driving the robot from
r to ¥ is activated first. The remaining controllers for all
the propositions that change value over the transition, i.e.
for , € [y (@)\ 1y (¢') Um(¢')\ 9 (9)] \ L. are only activated
(or deactivated) once the robot had crossed the boundary
between r and /. Assuming instantaneous activation of the 7,
controllers, this also completes the discrete transition (q,q’).
Fig. 2(a) depicts the change in state for the transition depicted
in Fig. 1, and how it corresponds to the progress of the
continuous controllers.

This approach to continuous execution has two drawbacks
when some controllers are non-instantaneous:

Delayed Response: The above approach of executing the
slow action first (in this case motion) sometimes sacrifices
responsiveness in exchange for safety of continuous execu-
tion under the assumption of instantaneous fast actions. It is
usually desirable to respond to sensor inputs in a “greedy”
manner, i.e. as fast as possible. For example, the camera
should be turned on as soon as a person is sensed, regardless
of the other actions to be performed. However, with this
approach to continuous execution, the robot will not turn on
its camera as soon as it senses a person, instead waiting until
the transition to r, has been completed.

Unsafe Intermediate States: While continuous execution
using the original approach is safe for instantaneous fast
actions, it admits potentially unsafe intermediate states
when fast actions are non-instantaneous. For example, if
the low-level controller for turning on the camera is non-
instantaneous, the continuous execution of the controller in
Example 2 will pass through the intermediate state qgs (not
present in the discrete automaton) with }/y(qgs) ={m,}, as
depicted in Fig. 2(b). Although in this example, qgs is a safe
state, this is not true in general. Furthermore, if the camera is
activated simultaneously with the motion to allow immediate
reaction to the sensor, the execution would pass through qgs
(Fig. 2(c)), which could be an unsafe state.

Example 3 Consider Example 2 with the added safety:

D(—'(ﬂcamem N Tty)) (Do not activate the camera in rl)

This requires that the camera never be turned on when
in 7. In this case, the intermediate state qg‘y resulting from
simultaneous activation of the controllers will be unsafe. In
other words, the execution depicted in Fig. 2(b) is still safe
while that in Fig. 2(c) is not. It is desirable to obtain a
controller that guarantees safety of intermediate states that
are not explicitly present in the synthesized automaton or
checked during the existing synthesis process, but rather
occur as artifacts of the continuous execution.

It may seem reasonable to circumvent these problems by
requiring at most one robot action per transition; however,
this could result not just in unnecessarily large automata, but
also in newly unsynthesizable specifications. For instance,
the specification in Example 2 would be unsynthesizable
because the robot can never move from r; to rp if the
environment alternates between person and no person (since
the robot will have to toggle the camera on and off, and
cannot move while doing so).

Given a discrete transition (g,q'),Y = Vr U Vs, define
vr(q) = ¥y(q) N Vr and ¥s(q) = yy(q) N Vs. Let ¢/* define
the discrete state with 73,(¢”*) = ¥y, (q¢) Uy, (¢'). This is the
intermediate state in the transition between ¢ and ¢’, such that
the fast actions have finished executing but the slow actions
have not. Define

nagq)={ 97 1 ws(@) #15(d) A1 (@) # 19, ()
9 q otherwise

This is a function that returns the intermediate state ¢/* if
both slow and fast actions change over the transition (g,q’).

10
Distance fromr2 5r

o
it

Camera readiness

0
1+

0
1+

g
camera

|
|

0 n n L L)
Time ¢ 2 4 6 8 10
q0 qg‘ q

(a) Motion completes first, instantaneous camera. This corresponds to the approach in
[3] (assuming instantaneous fast actions).
10 |
Distance fromr2 5r !
% !
Camera readiness]
0 |
1k

0
1+

b4
camera

0 n n L L)
Time ¢ 2 4 6 8 10

90 s a1

(b) Actual execution of 2(a). Motion completes first, camera is non-instantaneous.

10
Distance fromr2 5r

—o
T

!
T
I
I
|
. 1 [I I
Camera readiness ! I
I I
| |
! !
I
I
i
T
I

g
camera

Time o 2 4 6 8 10
q0 q({; q1

(c) Camera completes first in the new approach.

Fig. 2: Timing diagrams for continuous execution of the discrete
transition in Fig. 1 :

Note that if only the slow actions or only the fast actions

change, there is no intermediate state in the continuous
3 s

execution. In Example 2, h(qo,q1) = qoqg .

Definition 3 Given A = (0,Q0,X,Y,8,vx,vy), let HYS =
{h(qo,q1)..-1(qi,giv1)--- | qoq1... € Q¥ qiv1 € O(qi) }-

H f S defines the projection onto the set of discrete states Q
of all continuous executions of automaton A when there are
controllers of two completion times, and they are executed
simultaneously to implement each discrete transition.

Problem 1 Given ¢,Y = YrUYs and a set of safe states
Osafe, the goal is to construct Ay such that Vo € H‘f (5 ,0 €
fo’afe (if such an automaton exists).

Intuitively, the goal is to generate an implementing automa-
ton such that every continuous execution contains only safe
states. The set of safe states Qy,r. can be arbitrarily defined —
in this paper, it is the set of all states not explicitly excluded
by the specified safety properties ¢, and ¢.

IV. SYNTHESIS FOR FAST AND SLOW ACTIONS

This section presents a synthesis algorithm that guarantees
correctness of continuous executions when simultaneously

executing low-level controllers of two different completion
times for every discrete transition. The synthesis is based on
the algorithm in [8], and reduces the realizability problem
to finding a winning strategy in a game played between
the system (robot) and the (adversarial) environment. The
two players alternate “moves”, which correspond to setting
values for their respective propositions according to their
transition relations: the environment moves first in each time
step, and is followed by the system. An infinite alternation
of player moves is winning for the system if it either satisfies
the system transition relation and liveness requirements, or
prevents the environment assumptions from being fulfilled.
The set of states from which there exists a winning strategy
for the system is called the winning set of states. If the
specification is realizable, every initial state admitted by
@! A @l is winning for the system. On the other hand, if the
environment can make moves to prevent the system from
responding in a manner that satisfies ¢, no automaton is
generated. When this happens in LTLMoP, information about
the cause of the unsynthesizability of the specification is
displayed to the user [12], [13].

Formally, the set of states that are winning for the system
can be characterized using the modal p-calculus, which
extends propositional modal logic with least and greatest
fixpoint operators u,v [14]. Given a set of propositions P,
P = ¢ denotes that truth assignments setting 7 € P to True
and T ¢ P to False satisfy the Boolean formula ¢. The
syntax of u-calculus formulae over Ay is defined recursively:

« A Boolean formula ¢ is interpreted as the set of states
[@] in which ¢ is true, ie. [9] ={q€ Q| v(q) E ¢}
The set of states [¢] is defined inductively on the
structure of the u-calculus formula.

« The logical operator Q) is defined as in [8]:

[0 9] = {q € 0| ¥x € 5x(9),3(g,x) € [9]}. In words,
this is the set of states g from which the system can force
the play to reach a state in [@], regardless of what move
the environment makes from ¢ (i.e. for any x € dx(g)).
In Example 2, [Q] is the set of all states in which
the robot can move to region r,, regardless of what the
environment does, so [O 7, ={q0,41,¢>} in Fig. 1.

o Let y(X) denote a p-calculus formula y with free
variable X. [uX .y (X)] = U;X; where Xo =0 and X;;| =
[w(X;)]. This is a least fixpoint operation, computing
the smallest set of states X satisfying X = y/(X).

o [VvX.y(X)] = niX; where Xo = Q and X;11 = [y(X;)].
This is a greatest fixpoint operation, computing the
largest set of states X satisfying X = y(X).

In [8], the set of winning states for the system is charac-

terized by the u-calculus formula @,,;, =

7 nY. (Vi vX.(J AOZ VO Y V -JLAD X))

Z uy. (Vi vX (2 AQZ3VOY V =Ji AO X))
\% .

Zy nY. (VE vX.(JIAQZIVOY V -JiAD X))

where J! is the i environment liveness (i € {1,...,m}),
and J{ is the j™* system liveness (j € {1,...,n}). For i €

@ - @
do AN -

AL -~ - q1
A

‘ rl \

] 1

_ camera ,’

ez

Fig. 3: Intermediate state with fast camera and slow motion

{1,...,m} and j € {1,...,n}, the greatest fixpoint vX.(J{ A
QZi;i VOY V -JEAQX) characterizes the set of states
from which the robot can force the game to stay infinitely
in states satisfying —J!, thus falsifying the left-hand side
of the implication @, = @, or in a finite number of steps
reach a state in the set Quin = [J{ AOZjz1 VOY]. The
two outer fixpoints ensure that the robot wins from the set
Ouin: LY ensures that the play reaches a J{ AQZ jeo1 state
in a finite number of steps, and vZ ensures that the robot
can loop through the livenesses in cyclic order. From the
intermediate steps of the above computation, it is possible to
extract an automaton that realizes the specification, provided
every initial state is winning; details are available in [8].

To incorporate the relative execution times of the robot
controllers, the synthesis algorithm is further constrained
to generate only automata with safe intermediate states as
follows. Given @,) = VrUYs and Qy,y., define the set:

FSy= {g€Q|Vxe dx(q),8(q.x) € [¢],
(@) # vyr(q') and 15(q) # vys(q'),

and qfs' € Qsafe}

This is the set of states from which the system can in a
single step force the play to reach a state in [¢] by executing
actions of both fast and slow controller durations. In addition,
the intermediate state ¢/* in the corresponding continuous
execution is safe. Also define

FSo= {q€Q|Vx€dx(q),6(q,x) € [¢] and
(Yvr (@) = Yo (4") or Yys(q) = Yy5(d))}

This is the set of states from which the system can force
the play to reach a state in [@] by executing actions of only
one controller duration (fast or slow). In this case, there are
no intermediate discrete states in the continuous execution.

Using the above two sets, define a new operator [Qrs@] =
F Sglo UF S%D. Informally, Qg is the set of states ¢ from
which the system can force the play to reach a state in [@],
regardless of what move the environment makes from ¢, with
the additional constraint that, if both fast and slow controllers
are to be executed to implement a transition, the resulting
intermediate state ¢/* (depicted in Fig. 3) is safe.

Returning to Example 3, where the system safety condition
includes “Always not camera in ri” (O(=(Zcamera A r,),
a state in which the system senses a person is only in
[OFs Tcamera] if the robot can stay in the same region
while turning on the camera. Recall that gg is the state in
which the robot is in r; with the camera off. Observe that
q0 & [OFs Teamera] (recall that this means that in go, the robot
cannot guarantee that the camera will be turned on in the next
time step). This is because, if the environment Sets Tperson
to true while the robot is still in 7|, the safety condition
O(—(Tcamera A Tr,)) prevents the robot from turning on the
camera before first moving to r,, and so the camera cannot

QO robot

¥ person enters
field of view

—— trajectory (camera off)
trajectory (camera on)

Fig. 4: Comparison of continuous trajectories and discrete events
resulting from the two approaches for Example 2. a) Camera is
turned on as soon as a person is sensed, according to the approach
in this paper. b) When a person is sensed, motion is completed first,
then camera turns on. This corresponds to the approach in [3].

be immediately activated since it would finish execution
before the robot had left r;. The corresponding specification
is unrealizable under the new synthesis algorithm, whereas
the original synthesis algorithm would return an automaton
that included the transition (go,q;) in Fig. 1. This difference
is consistent with the observation that this transition is
safe for the original execution in [3], under the assumption
of instantaneous fast actions, but is unsafe if all action
controllers are to be called simultaneously.

The proposed synthesis algorithm is accompanied by a
new execution paradigm that calls all low-level controllers
corresponding to a discrete transition simultaneously. Once
a transition is begun, the controller ignores changes in the
environment until the (slower) motion action completes.

V. IMPLICATIONS OF NEW APPROACH

This section presents some implications of the new syn-
thesis and execution approach in terms of changes in the
observed behavior when compared with [3].

A. Immediate Response

Consider again the specification in Example 2, in which
the robot has to move from its starting position r; to its
destination r, and turn its camera on if it sees a person
along the way. With the new execution paradigm, the hybrid
controller turns the camera on immediately when a person
is sensed. The trajectory that results from this controller is
depicted in Fig. 4(a). (For the purpose of illustration, in this
example we assume that the person, once visible to the robot,
remains visible.) Using the previous approach to synthesis
and execution, in which slow actions are executed before fast
actions, this specification would result in undesired behavior:
even if the robot sensed a person while in the middle of ry,
it would only react to it once it completed its movement
to region r,. This is depicted in Fig. 4(b). Furthermore, the
person would still need to be sensed at the time of region
transition, or else a different transition would be chosen and
the person would effectively be ignored.

This problem, which arises in the previous approach, can
be pre-empted by adding an extra safety requiring the system
to momentarily stay in place when reacting to a person:

O ((nperson 7é O ﬂp@r&on) =
(Om, & m,) A (O, © 7))

(If the value of the person sensor changed, stay in place)

This requirement forces the synthesis process to generate an
additional state with no slow action transition, but this causes

Fig. 5: Synthesized automaton for Example 2 with
weakened goal from Section V-A

the system to be unrealizable (because the environment
can oscillate the value of 7ye50, to keep the system from
moving), unless the system goal is weakened as follows:

O <>(ﬁ7tperson = nrz)
(Infinitely often, if you are not sensing a person go to r;)

Fig. 5 depicts the automaton synthesized for this weakened
goal. Note that if the robot is in 7| and a person is sensed, the
robot will stay in r| until the person is no longer sensed. This
could lead to the robot never leaving ry, which is inconsistent
with the original desired behavior.

The need for these extra, unintuitive modifications is
undesirable, and the new approach makes them unnecessary
by inherently ensuring that fast actions will complete before
slow ones. However, the new approach assumes that the envi-
ronment does not change once the fast action has completed,
and ignores any changes until the slower action completes.

B. Consequences for Interpretation of Tense

Example 4 Consider a similar example, with the addition
of a hallway rpyy in between ry and ry, and the additional
requirement that the camera be turned on if and only if the
robot is in the hallway (independent of sensor states):

(Prl N Teamera
(Robot starts in region rl with camera turned off)
/\ D(O ﬂcamera <:> O ﬂ'.rha”)
(Activate camera if and only if you are in the hall)
A OO(en)
(Go to r2 infinitely often)

With the approach in [3], this yields an automaton. However,
it is unsynthesizable with the new approach, because if the
robot tries to move closer to its goal r, by entering the
hallway, it will have to turn on its camera, but these two
events have to occur simultaneously according to the safety
O(O tecamera < Oy,)- Since the motion is slower than the
action of turning on the camera, these events cannot occur
simultaneously under the new execution paradigm, and so
the robot can never move between the two rooms, making
the specification unsynthesizable.

In the new approach, the desired behavior of activating the
camera only after moving into the hallway is achieved by
adjusting the relative tenses of the system safety as follows:

D(O Teamera <= nrha[[)
(Activate camera if and only if you were in the hall)

VI. CONCLUSIONS AND FUTURE WORK

This paper describes a challenge of applying formal
methods in the physical domain of high-level robot control,
namely that of achieving correct continuous behavior from
discrete control automata when the low-level controllers have
different completion times. A new synthesis algorithm and
execution paradigm are presented for the case where robot
actions are either fast or slow. The new approach guarantees
immediate reactivity and the safety of intermediate states
arising during execution. Future work will generalize the so-
lution to more than two controller execution times (including
controllers whose relative completion times are unknown).

Recent work has addressed the question of providing
user feedback on a specification that has no implementing
controller [12], [13]. A specification may be synthesizable
under the original synthesis procedure, but unsynthesizable
when checking for safety of continuous executions. In this
situation, the user can be alerted to the fact that the relative
controller execution times are responsible for the unsynthe-
sizability. The most user-friendly way to present the user
with this information is another open question of this work.

VII. ACKNOWLEDGEMENTS

The authors thank Dr. Nir Piterman for fruitful discussions
leading to the writing of this paper.

REFERENCES

[1] M.Kloetzer and C.Belta, “A fully automated framework for control of
linear systems from temporal logic specifications,” IEEE Transaction
on Automatic Control, vol. 53, no. 1, pp. 287-297, 2008.

[2] A. Bhatia, L. E. Kavraki, and M. Y. Vardi, “Sampling-based motion
planning with temporal goals,” in IEEE International Conference on
Robotics and Automation. 1EEE, 2010, pp. 2689-2696.

[3] H. Kress-Gazit, G. E. Fainekos, and G. J. Pappas, “Temporal-logic-
based reactive mission and motion planning,” IEEE Transactions on
Robotics, vol. 25, no. 6, pp. 1370-1381, 2009.

[4] T. Wongpiromsarn, U. Topcu, and R. M. Murray, “Receding horizon
control for temporal logic specifications,” in Hybrid Systems, 2010,
pp- 101-110.

[5] E. M. Clarke, O. Grumberg, and D. A. Peled, Model Checking. MIT
Press, 1999.

[6] G. Jing, C. Finucane, V. Raman, and H. Kress-Gazit, “Correct high-
level robot control from structured english,” in ICRA, 2012, pp. 3543—
3544.

[7]1 C. Finucane, G. Jing, and H. Kress-Gazit, “LTLMoP: Experimenting
with language, temporal logic and robot control,” in IEEE/RSJ Int’l.
Conf. on Intelligent Robots and Systems, 2010, pp. 1988 — 1993.

[8] N. Piterman, A. Pnueli, and Y. Sa’ar, “Synthesis of reactive(l)
designs,” in In Proc. Verification, Model Checking, and Abstract
Interpretation (VMCAI 06). Springer, 2006, pp. 364-380.

[9]1 R. Alur, T. A. Henzinger, G. Lafferriere, and G. J. Pappas, “Discrete
abstractions of hybrid systems,” in Proceedings of the IEEE, 2000, pp.
971-984.

[10] C. Belta, V. Isler, and G. J. Pappas, “Discrete abstractions for robot
motion planning and control in polygonal environments,” /EEE Trans-
actions on Robotics, vol. 21, no. 5, pp. 864-874, 2005.

[11] D.C. Conner, A. Rizzi, and H. Choset, “Composition of local potential
functions for global robot control and navigation,” in Proceedings of
2003 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS 2003), vol. 4. 1EEE, October 2003, pp. 3546-3551.

[12] V. Raman and H. Kress-Gazit, “Analyzing unsynthesizable specifica-
tions for high-level robot behavior using LTLMoP,” in CAV, 2011, pp.
663-668.

[13] V. Raman and H. Kress-Gazit, “Automated feedback for unachievable
high-level robot behaviors,” in ICRA, 2012, pp. 5156-5162.

[14] D. Kozen, “Results on the propositional mu-calculus,” Theoretical
Computer Science, vol. 27, pp. 333-354, 1983.

