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Abstract— Formal methods have recently been successfully
applied to construct verifiable high-level robot control. Most
approaches use a discrete abstraction of the underlying con-
tinuous domain, and make simplifying assumptions about the
physical execution of actions given a discrete implementation.
Relaxing these assumptions unearths a number of challenges
in the continuous implementation of automatically-synthesized
hybrid controllers. This paper describes a controller-synthesis
framework that ensures correct continuous behaviors by ex-
plicitly modeling the activation and completion of continuous
low-level controllers. The synthesized controllers exhibit desired
properties like immediate reactiveness to sensor events and
guaranteed safety of physical executions. The approach extends
to any number of robot actions with arbitrary relative timings.

I. INTRODUCTION

Formal methods tools have recently been applied to
the construction of controllers for high-level autonomous
robot behaviors such as search and rescue missions and
autonomous vehicle control [1], [4], [5], [7], [13]. Tradi-
tionally, the high-level control for such tasks is hard-coded,
combining low-level techniques in an ad hoc fashion. Such
an implementation provides no guarantees of fulfilling the
desired requirements, motivating the use of formal methods
to construct controllers that do provide such guarantees.

One technique that has been successfully applied to high-
level robot planning is synthesis, in which a correct-by-
construction controller is automatically synthesized from a
formal task specification [7], [13]. These synthesis-based
approaches operate on a discrete abstraction of the robot
workspace and a formal specification of the environment
assumptions and desired robot behavior, and produce an au-
tomaton fulfilling the specification on this abstraction if one
exists. This automaton is used to construct a hybrid controller
that calls low-level continuous controllers to execute each
discrete transition. Consequently, a single transition between
discrete states may correspond to the simultaneous execution
of several low-level controllers.

In general, a robot with multiple action capabilities will
use low-level controllers that take varying amounts of time
to complete. This gives rise to a number of challenges in the
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continuous implementation of the synthesized hybrid con-
troller. Using the continuous execution paradigm described
in [7], all controllers except motion between adjacent regions
of the workspace (i.e. all “fast” actions) are assumed to have
instantaneous execution. Given a discrete transition between
two states with different locations, the motion controller
for driving the robot between regions is activated first, and
the remaining controllers are only activated (or deactivated)
once the robot has crossed into the new region. However,
as described in [11], there are artifacts of this continuous
execution paradigm that are not modeled at the discrete
level. These include a delayed response to events in the
environment, and unsafe continuous executions even though
the discrete automaton is provably correct.

If the execution paradigm is changed to activate the
fast actions as soon as possible (before the slow actions
complete), the synthesis algorithm must be changed to ensure
safe continuous execution [11]. However, with this approach,
the execution paradigm ignores changes in the environment
once a transition has been started, until the destination state
is reached. The resulting controllers are correct under the
assumption that the environment does not change during the
execution of a discrete transition; correctness is thus at the
expense of being fully responsive to the environment.

This paper presents a new approach that ensures both
immediate reactivity and continued responsiveness to the
environment, for low-level controllers of unknown relative
execution times. Like the approach in [11], which changed
the original synthesis algorithm [9] to ensure that fast ac-
tions could complete safely before slow ones, the approach
presented here changes the algorithm (albeit in an entirely
different manner) to ensure safe executions while maintain-
ing tractability. Additionally, each robot action is explicitly
separated into two events: the activation of the corresponding
low level controller, and the triggering of a new sensor that
indicates completion of its execution. This approach is shown
to solve both the aforementioned problems.

This is one of the first works to consider the safety
and correctness of continuous executions of synthesized
automata arising from the physical nature of the problem
domain. There are a few previous approaches that tried to
ensure that the provably correct discrete controller results
in correct continuous executions. For example, the authors
of [8] resynthesized portions of the high-level controller at
execution time when changes in the physical domain make
the contr oller execution infeasible. In contrast, this work
incorporates the continuous nature of the physical execution
in the synthesis process from the beginning, by modeling the



non-instantaneous nature of controller execution.

II. BACKGROUND

This section provides an overview of the construction of
provably correct robot controllers. The presented approach is
implemented in the Linear Temporal Logic Mission Planning
(LTLMoP) toolkit [3], which allows a specification written
in a structured English grammar [6] to be transformed into a
hybrid controller for use with real robots and in simulation.
Example 1, adapted from [11], will serve to demonstrate the
stages of synthesis for a simple high-level task.

A. Linear Temporal Logic (LTL)

Syntax: LTL formulas are defined recursively as:

ϕ ::= π | ¬ϕ | ϕ ∨ϕ | ©ϕ | ϕUϕ,

where π ∈ AP (a set of atomic propositions), ¬ is negation,
∨ is disjunction,© is “next”, and U is a strong “until”. Con-
junction (∧), implication (⇒), equivalence (⇔), “eventually”
( �) and “always” (�) are derived operators.

Semantics: The truth of an LTL formula is evaluated over
infinite sequences of states, corresponding to executions of
a finite state machine representing the system. A state is an
assignment of truth values to all propositions π ∈ AP. Given
an infinite sequence of these states σ , the statement σ |= ϕ

denotes that σ satisfies formula ϕ . The statement σ |= ∆ϕ

for ∆ = (©,�, �,� �) denotes that ϕ is true at the second
position, at every position, at some position, and infinitely
often in σ , respectively. A finite state machine A is said to
satisfy ϕ if for every execution σ of A, σ |= ϕ . The reader
is referred to [2] for a formal definition of the semantics.

B. Discrete Abstraction and Formal Specification

The relevant features of the continuous robot control
problem are abstracted using a finite set of propositions
consisting of:
• πs for every sensor input s (e.g., πperson is true if and

only if a person is sensed)
• πa for every robot action a (e.g., πcamera is true if and

only if the robot has turned on the camera)
• πr for every location or region r (e.g., πbedroom is true

if and only if the robot is in the bedroom).
The set of sensor propositions is denoted by X , and the

set of action and location (i.e., robot-controlled) propositions
by Y; L ⊆ Y denotes the set of location propositions. Thus
πs ∈X ,πr ∈L,πa ∈Y\L. The value of each π ∈X ∪Y is the
abstracted binary state of a low-level black box component,
such as a thresholded sensor value or the robot’s location
with respect to some partitioning of the workspace.

Example 1 Consider a simple two-room workspace where
the two adjacent locations are labeled r1 and r2 (correspond-
ing to πr1 and πr2 ). The robot has one sensor, which senses a
person (represented by proposition πperson), and one action,
which is to turn a camera on or off (πcamera). The robot starts
in room r1 with the camera off. When it senses a person, it

must turn on the camera. Once the camera is on, it must
stay on. Finally, the robot must visit room r2 infinitely often.

Here X = {πperson} and Y = {πr1 ,πr2 ,πcamera}. A high-
level task is specified on this discrete abstraction using
an LTL formula over X ∪Y . Two types of properties are
allowed: safety properties, which guarantee that “something
bad never happens,” and liveness conditions, which state that
“something good (eventually) happens.” This work considers
tasks that can be specified using formulas of the form
ϕe ⇒ ϕs, where ϕs represents the desired robot behavior,
and ϕe encodes assumptions on the environment, including
events external to the robot as well as the robot’s internal
state, as perceived by its sensors. ϕe and ϕs each contain
initial conditions (ϕ i

e,ϕ
i
s), safety requirements (ϕ t

e,ϕ
t
s) and

liveness conditions (ϕg
e ,ϕ

g
s ) for the environment and robot,

respectively. Some approaches also provide a more user-
friendly specification language and accompanying parser, to
allow users unfamiliar with LTL to write specifications [6].

Since the robot can be in exactly one location at any given
time, the formula ϕr = πr∧

∧
r′ 6=r¬πr′ is used to represent the

robot being in region r. The robot’s motion in the workspace
is governed by adjacency of regions, and the availability of
controllers to drive it between adjacent regions. In LTLMoP,
the adjacency relation is automatically encoded as a logic
formula ϕtrans. The adjacency relation for Example 1 is

ϕtrans = �(ϕr1 ⇒©ϕr1 ∨©ϕr2)∧�(ϕr2 ⇒©ϕr2 ∨©ϕr1).

The task in Example 1 corresponds to the following LTL
specification:

(ϕr1 ∧¬πcamera) #Initial
(Robot starts in region r1 with the camera off)

∧ �(©πperson⇒©πcamera) #Safety
(Activate the camera if you see a person)

∧ �((πcamera⇒©πcamera)) #Safety
(Camera stays on once turned on)

∧ � �(πr2) #Liveness
(Go to r2 infinitely often)

C. Synthesis

An LTL formula ϕ is realizable if there exists a finite state
strategy that, for every finite sequence of truth assignments to
sensor propositions, gives an assignment to the robot propo-
sitions such that every infinite sequence of truth assignments
to both sets of propositions generated in this manner satisfies
ϕ . The synthesis problem is to find a finite state machine
encoding this strategy, i.e. whose executions satisfy ϕ .

Synthesizing an automaton that realizes an arbitrary LTL
formula is doubly exponential in the size of the formula
[10]. When restricted to LTL formulas of the form ϕe⇒ ϕs
described above, the algorithm introduced in [9] permits
synthesis in time polynomial in the size of the state space,
while still capturing a large number of tasks specified in
practice. Fig. 1 depicts the automaton synthesized for the
above specification using this synthesis algorithm. Each state
of the automaton is labeled with the subset of location and
action propositions that are true in that state, and each tran-
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Fig. 1: Synthesized automaton for Example 1. States are labeled
with the location and action propositions that are true in that state.
Transitions are labeled with the sensor propositions that are true for
that transition to be enabled.

sition is labeled with the sensor propositions that are true for
that transition to be enabled. Incoming transitions therefore
also determine the truth value of the sensor propositions
for each state. The labels ri,camera and person represent
πri ,πcamera and πperson respectively.

III. CONTINUOUS EXECUTION

When a specification is realizable, synthesis yields an
automaton that implements the specification in a discrete
abstraction of the problem. If no such automaton exists,
the user is presented with information about the cause
of the unrealizability [12]. If an automaton is obtained,
a controller that implements the corresponding continuous
behavior is constructed by viewing the automaton as a hybrid
controller, with a transition between two states achieved by
the activation of one or more low-level continuous controllers
corresponding to each robot proposition.

This section describes two approaches to physical ex-
ecution of the synthesized automaton, and the challenges
and shortcomings of each. Consider the workspace and task
described in Example 1. Suppose the robot starts in room r1,
with its camera turned off and no persons sensed (so it is in
the initial state q0 in Fig. 1). Suppose it then senses a person.
The safety condition �(©πperson⇒©πcamera) requires it to
turn on the camera. In order to fulfill its patrol goal, it will
also try to go to room r2. So the discrete transition in the
automaton generated by the synthesis algorithm in [9] will be
to state q1. To execute the transition (q0,q1) at the continuous
level, a motion controller and a controller for turning on the
camera must both be invoked.

A. Assuming Instantaneous Actions Except Motion [7]

Under the continuous execution paradigm in [7], all con-
trollers except motion between adjacent regions (i.e. all
fast actions) are assumed to have instantaneous execution.
Given a discrete transition between two states with different
locations, the motion controller for driving the robot between
regions is activated first, and the remaining controllers only
activated (or deactivated) once the robot has crossed into
the new region. Thus, to execute the transition (q0,q1), the
hybrid controller constructed for Example 1 first activates
the controller for moving from r1 to r2, and only once that
boundary has been crossed will it activate the (instantaneous)
controller for turning on the camera, completing the discrete
transition (q0,q1). This leads to a perceived delay in the robot
turning on the camera in response to seeing a person.

B. Assuming Slow and Fast Actions [11]

Under the approach in [11], on the other hand, the robot’s
actions are grouped into two sets based on execution dura-
tion, and all actuator controllers are executed simultaneously.
Thus, to execute the transition (q0,q1), the hybrid controller
constructed for Example 1 activates the controller for turning
on the camera (fast) simultaneously with that for moving
from r1 to r2 (slow). The transition (q0,q1) is completed
only when the motion completes. However, the execution
paradigm ignores changes in the environment once a transi-
tion has begun (i.e. following activation of a fast controller),
until the destination is reached. This approach therefore
produces controllers that are correct under the assumption
that the environment does not change during the execution
of a discrete transition, and will ignore any such changes.

Note that in this execution, the camera will turn on
before the motion completes, and the robot is still in r1,
effectively resulting in an intermediate discrete state. To
ensure safety of the continuous execution, the synthesis
algorithm was changed to ensure that all such intermediate
states are safe [11]. The automaton produced by the modified
synthesis algorithm contains only those transitions for which
the intermediate states are safe.

IV. PROBLEM FORMULATION

The chief drawback of the continuous execution paradigm
in III-A is delayed reactivity. It is usually desirable to respond
to sensor inputs in a “greedy” manner, i.e. as soon as
possible; for example, the camera should be turned on as
soon as a person is sensed, regardless of the other actions
to be performed. However, with the approach to continuous
execution in III-A, the robot will not turn on its camera until
the transition to r2 has been completed. As described in III-B,
this approach may also result in unsafe continuous executions
even though the discrete automaton is provably correct.

Furthermore, during the transition (q0,q1), if the person
disappears before the motion completes, the transition is
aborted, and the execution returns to q0 (and then to an
alternate successor state according to the automaton). Note
that this causes the person to be ignored completely. On the
other hand, if the camera is activated simultaneously with the
motion, execution will pass through an intermediate state in
which the fast action (camera) has completed but the slow
action (motion) has not. If the robot safety formula required
that the camera never be turned on in r1, the execution
resulting from turning on the camera and starting the motion
to r2 at the same time would be unsafe as the camera turning
on in r1 is not captured by the discrete (and safe) model.

The correctness of the controllers generated in III-B, in
comparison, relies on the assumption that the environment
does not change during the execution of a discrete transition.
Consider again the transition (q0,q1) in Fig. 1 where the
camera will be turned on at the same time as the motion but
will complete before the robot has reached r2. Suppose the
robot stops sensing a person after the camera has been turned
on, but before reaching r2. Then the transition (q0,q1) will be
aborted, and (q0,q2) will be taken instead. This results in the



camera going from on to off, violating the safety condition
that enforces persistence of the camera action.

In the above example, the execution paradigm proposed
in III-B will ignore the disappearance of a person after the
camera has turned on. Correctness is therefore at the expense
of being fully responsive to the environment during the time
taken to move between regions. Additionally, the approach in
III-B assumes a known ordering on action completion times,
reducing the number of intermediate states to be checked; it
extends to an unknown ordering with an exponential blow-up
in the number of intermediate states considered.

The shortcomings of the two existing approaches lead to
the following problem, which this paper solves.

Problem 1 Given a specification ϕ and a set of actions with
unknown relative completion times, construct an automaton
such that every continuous execution satisfies ϕ , while al-
lowing the robot to react as soon as possible as well as to
remain responsive to changes in the environment.

V. SOLUTION

This section proposes a solution to Problem 1 for arbitrary
but finite action completion times. To account for the non-
instantaneous execution of all continuous controllers (not just
motion), each robot action is viewed as the activation of the
corresponding low level controller, and the robot is assumed
to sense when a low level controller finishes executing (e.g.,
when the camera has turned on, or the robot arrives in r2).

A. Discrete Abstraction
The discrete model now includes sensor propositions in-

dicating whether each controller has completed execution:
• πs for each sensor input s (e.g., πperson is true if and

only if a person is sensed)
• πa for the activation of each robot action a (e.g., πcamera

is true if and only if the robot has activated the controller
to turn on the camera). Similarly, ¬πa represents the
activation of the controller for turning a off.

• πr for the initiation of motion towards each region r
(e.g., πbedroom is true if and only if the robot is trying
to move to the bedroom). ϕr is defined as in Section II.

• πc
a ,π

c
r for the completion of the controller for turning

action a on, or motion to region r (e.g., πc
bedroom is true

if and only if the robot has arrived in the bedroom,
and πc

camera is true if and only if the camera has
finished turning on). ¬πc

a represents the completion of
the controller for turning action a off.1

Action/motion completion is modeled as an event sensed
by the robot, and therefore X = {πc

a} ∪ {πc
r } ∪ {πs},Y =

{πa}∪{πr}. For Example 1, X = {πperson,π
c
r1
,πc

r2
,πc

camera}
and Y = {πr1 ,πr2 ,πcamera}.
B. Formal Specification Transformation

Given this discrete abstraction, the task specification now
governs which actions can be activated by the robot, and how
the action-completion sensors behave.

1Note that this paper considers actions other than motion to have on and
off modes only, but the approach extends to other types of actions.

1) Proposition replacement in original specification: A
specification ϕ = (ϕe⇒ ϕs) in [7] is modified as follows:
• Initial conditions specify the sensed state of the robot,

so every occurrence of πa in ϕ i
s is replaced with πc

a .
• Robot goals are predicated on the completion of actions

(as sensed by the corresponding sensor). So every
occurrence of πa in ϕ

g
s is replaced with πc

a . Similarly,
robot goals refer to the sensed location πc

r rather than
just the activation of the motion controller πr.

• Robot safety conditions govern which controllers are to
be activated in response to events in the environment,
and may refer to the sensing of action completion
as well as events in the environment. The user input
language, such as that presented in [6], must therefore
allow distinguishing between a reference to πa and πc

a
in safety conditions, as discussed in VI-B.

The resulting LTL specification is denoted ϕ ′ = ϕ ′e ⇒ ϕ ′s.
Table I presents the LTL formulas corresponding to the
specification for Example 1, provided in Section II, before
and after proposition replacement.

2) Robot Transition Relation: The allowed robot motion
now depends on the sensed location. Given a region r, let
Ad j(r) denote the regions adjacent to r (including r itself).
ϕtrans II-B then changes as follows:

ϕ ′trans =
∧

r �(πc
r ⇒

∨
r′∈Ad j(r) ϕr′)

For Example 1,

ϕ
′
trans =�(πc

r1
⇒ (ϕr1 ∨ϕr2))∧�(πc

r2
⇒ (ϕr2 ∨ϕr1))

3) Sensor Assumptions: Additional assumptions define
the effects of the robot activating its various controllers.

ϕeNew =
∧
r
�(πc

r ⇔
∧

r′ 6=r

¬π
c
r′) (1)

∧
∧
r

∧
r′∈Ad j(r)

�(πc
r ∧ϕr′ ⇒ (©π

c
r ∨©π

c
r′))(2)

∧
∧
a
�(πc

a ∧πa⇒©π
c
a) (3)

∧
∧
a
�(¬π

c
a ∧¬πa⇒©¬π

c
a) (4)

Conjunct (1) enforces mutual exclusion between the phys-
ical locations of the robot. Conjunct (2) governs how the
robot’s location can change in a single time step in response
to the activation of the motion controllers. Conjuncts (3-4)
govern the completion of other actions in response to the
activation of the corresponding controllers. In Example 1,

ϕeNew = �(πc
r1
⇔¬π

c
r2
) (5)

∧�(πc
r1
∧ϕr1 ⇒©π

c
r1
) (6)

∧�(πc
r1
∧ϕr2 ⇒©π

c
r1
∨©π

c
r2
) (7)

∧�(πc
r2
∧ϕr2 ⇒©π

c
r2
) (8)

∧�(πc
r2
∧ϕr1 ⇒©π

c
r2
∨©π

c
r1
) (9)

∧�(πc
camera∧πcamera⇒©π

c
camera) (10)

∧�(¬π
c
camera∧¬πcamera⇒¬©π

c
camera)(11)



English specification Original LTL (ϕ) New LTL (ϕ ′)
Robot starts in region r1 with the camera off ϕr1 ∧¬πcamera πc

r1
∧¬πc

camera
Activate the camera if you see a person �(©πperson⇒©πcamera) �(©πperson⇒©πcamera)

Camera stays on once turned on �((πcamera⇒©πcamera)) �((πc
camera⇒©πcamera))

Go to r2 infinitely often � �(πr2) � �(πc
r2
)

TABLE I: Replacing propositions in the task specification for Example 1

For example, conjunct (7) states that if the robot is in r1
(i.e. πc

r1
is true) and is activating the controller to move to r2

(i.e. ϕr2 ), then in the next time step, the robot is either still
in r1 (πc

r1
is true) or has reached r2 (πc

r2
is true). Conjunct

(10) states that if the camera is already on and is supposed
to be on, it will stay on.

4) Fairness conditions: In addition to the above safety
conditions, additional constraints on the environment are
required to ensure that every action/motion eventually com-
pletes, i.e. that the robot’s environment is in some sense
“fair”. A naive approach is to add an environment assumption
that every controller activation or deactivation eventually
results in completion, i.e. the fairness conditions � �(πa⇒
©πc

a) and � �(¬πa⇒©¬πc
a) for every action a.

However, this adds two fairness assumptions to the speci-
fication for every action. Since the synthesis algorithm scales
linearly with the number of assumptions, it is important to
minimize added assumptions. This is achieved by introducing
a single fairness condition that incorporates the possibility
that the robot is forced to “change its mind” by events in
the environment. To this end, two new Boolean formulas
ϕ

completion
a and ϕ

change
a are defined for each action a:

ϕ
completion
a = (πa∧©πc

a)∨ (¬πa∧¬©πc
a))

ϕ
change
a = (πa∧¬©πa)∨ (¬πa∧©πa))

ϕ
completion
a holds when the activation (or de-activation) of

the controller for a has completed execution. ϕ
change
a captures

the robot changing its mind (such as by toggling the camera).
A single pair of formulas ϕ

completion
loc ,ϕchange

loc suffices for
motion since locations are mutually exclusive and the robot
cannot try to move to two locations at once:

ϕ
completion
loc =

∨
r(ϕr ∧©πc

r )), ϕ
change
loc =

∨
r(ϕr ∧¬©ϕr))

The complete fairness assumption added is:

ϕa
f air =� �(ϕ

completion
a ∨ϕ

change
a )

Note that every execution satisfying both fairness condi-
tions described above for activation and deactivation also
satisfies this fairness condition. Moreover, there is only one
such assumption added for each action a (in Example 1, there
is one such assumption for the camera). Additionally, there
is one assumption ϕ loc

f air for motion. For Example 1,

ϕcamera
f air = � �[(πcamera∧©πc

camera)∨ (¬πcamera∧¬©πc
camera)

∨ (πcamera∧¬©πcamera)∨ (¬πcamera∧©πcamera)]
ϕ loc

f air = � �[(πr1 ∧©πc
r1
)∨ (πr2 ∧©πc

r2
)

∨ (πr1 ∧¬©πr1)∨ (πr2 ∧¬©πr2)]

Given a task specification ϕ = (ϕe⇒ ϕs), the LTL speci-

fication used to synthesize a controller (after proposition re-
placement, changing the robot transition relation, and adding
sensor assumptions and fairness conditions) is now

ϕnew = ϕ ′e∧ϕeNew∧
∧

a ϕa
f air ∧ϕ loc

f air⇒ ϕ ′s∧ϕ ′trans

C. Synthesis

Since the formulas ϕ
completion
a and ϕ

change
a in the proposed

liveness condition ϕa
f air govern both current and next time

steps, the original synthesis algorithm in [9] cannot be ap-
plied as-is to synthesize an implementing automaton for the
specification. Liveness conditions that incorporate temporal
formulas with both current and next time steps are handled
by changing the computation of the set of robot-winning
strategies in the synthesis algorithm [9].

Note that it is possible to use the original synthesis
algorithm (which only allows simple Boolean formulas in
liveness conditions) to synthesize a controller by introducing
a new proposition, π

completion,change
a , and the safety condition

�(©π
completion,change
a ⇐⇒ (ϕ

completion
a ∨ϕ

change
a ))

This allows the additional liveness to instead be written as

ϕ
′
f air =� �π

completion,change
a

However, this introduces one new proposition per robot
action. The complexity of the synthesis algorithm scales with
the size of the state space, which in turn scales exponentially
with the number of propositions. In addition, extra proposi-
tions result in larger automata that are harder to read.

Even with the above change to the synthesis algorithm,
one environment proposition must be added per robot action
(corresponding to the sensor for action completion). In the
worst case, the time taken for synthesis is therefore still
increased by a factor of 2|Y| over the original approach. With
the original synthesis algorithm, the increase is by a factor
of 4|Y| (since two new propositions are required per action).

D. Continuous Execution

Given a state q, observed sensor values X ⊂ X and the
corresponding next state q′ in the automaton, the transition
(q,q′) is executed by simultaneously invoking the controllers
corresponding to every action or location proposition πa
that changes value from q to q′. Note that the current
sensed state of the system, as represented by X , determines
which actions a can be activated in q′. Transitions in the
automaton are instantaneous, as they correspond to activation
or deactivation of controllers, but the controllers themselves
may take several discrete transitions to complete execution.

The resulting controller exhibits the desired properties:
• actions are executed immediately in response to sensor

events, eliminating the delayed reactivity of [7]



• safety of continuous executions is guaranteed even when
the robot changes its mind

• the approach extends to any number of robot actions,
with arbitrary relative timings, although the computa-
tional burden increases for a large number of actions.

VI. TEST CASES

This section provides test cases illustrating the effective-
ness of the proposed solution. The robot controllers for the
examples presented were synthesized using LTLMoP.

A. Safety of physical execution

Fig. 3 depicts an excerpt of the automaton synthesized for
Example 1. The full automaton has 7 states and is omitted
for conciseness. Negated sensor labels are omitted from the
transitions for clarity. The label c ri represents πc

ri
.

In state q0, the robot is in r2 (as indicated by πc
r2

being
true on the incoming transitions) with the camera off (πc

camera
is false), and is trying to go to r1 (as indicated by the action
πr1 being true). Consider the transition (q0,q1). The robot
reaches r1 (indicated by πc

r1
being true on the transition into

q1. It is now trying to go to r2, indicated by πr2 . In q1, if
the robot does not sense a person, it either moves back to
q0 or stays in q1 depending on whether it has reached r2
yet. On the other hand, suppose the robot senses a person
in q1 before it has reached r2, the execution moves to state
q3, where the robot is still trying to get to r2 but is now
additionally activating the camera. On the other hand, the
transition (q1,q2) is taken if the robot senses a person at the
same time as it reaches r2 (as indicated by sensor proposition
πc

r2
being true on that transition).

Note that in the continuous execution of the above au-
tomaton, all the controllers are invoked at the same time.
For example, when transitioning from q1 (where the robot
is in r1) to q3, the controller for moving to r2 and for
turning on the camera are being activated simultaneously.
Any difference in their completion times is captured by
the corresponding sensor propositions. Even if the person
disappears before the motion from r1 to r2 is completed,
the transition (q1,q3) is still taken (followed by a transition
out of q3 that corresponds to the person not being seen),
and the camera is still being activated in q3. This ensures
that the person is not ignored, since there is an explicit state
representing the fact that the camera is being turned on even
though the person has disappeared.

B. Activation and Completion Dependent Safety Properties

Desired safety properties can now also be defined in terms
of which actions have completed, rather than which actions
are activated. For example, when requiring that the camera
not be turned on in r1, the added system safety can be either
�(πc

r1
⇒ ¬πc

camera) or �(πc
r1
⇒ ¬©πcamera). The first of

these enforces the requirement that the camera not physically
be on while the robot is still in r1, whereas the second
states that the controller for turning on the camera will
not be activated while the robot is in r1. Note that both
specifications will produce the same observed behavior, but

the first one allows the robot to try to turn on the camera in
r1, whereas the second does not.

Recall from Section IV the challenge of ensuring safe
execution when transitions are aborted due to changes in the
environment. The safety condition enforcing that the camera
stays on once turned on (in Example 1) can be expressed
in terms of controller activation and completion, as either
�(πcamera⇒©πcamera) or �(πc

camera⇒©πcamera). The first
of these prevents the robot from toggling πcamera (e.g., by
flicking the camera switch on and off). The second prevents
the robot from trying to turn the camera off once it has com-
pletely turned on; toggling πcamera is allowed until the camera
has actually turned on. Similarly, the specification can be
fine-tuned to distinguish between continuous controllers that
can be aborted and those that cannot.

C. Unrealizability due to physical execution

Example 2 Consider the workspace depicted in Fig. 2(a).
The robot starts in r1 and has to visit r4. However, if it sees
a stop sign in either r2 or r3, it cannot pass through that
room. A safety assumption on the environment guarantees
that there will never be stop signs in both r2 and r3 at the
same time. There are initially no stop signs.

Given this specification, one might expect an imple-
menting controller that drives the robot from r1 to r4 via
whichever room (r2 or r3) does not have a stop sign.
However, if a stop sign appears while the robot is driving
to this room, the robot has to turn around and try the other
room. If this happens every time the robot starts moving
towards r4, it will never be able to reach r4. With the
approach in [7], the specification for Example 2 is:

∧ ¬πstop sign in r2 ∧¬πstop sign in r3 #Env Initial
(Env starts with no stop sign in either r2 or r3)

∧ �(¬(πstop sign in r3 ∧πstop sign in r2)) #Env Safety
(There will never be stop signs in both r2 and r3)

⇒
ϕr1 #Robot Initial

(Robot starts in r1)
∧ �(©πstop sign in r2 ⇒©¬ϕr2) #Robot Safety

(Do not go to r2 if you sense a stop sign in r2)
∧ �(©πstop sign in r3 ⇒©¬ϕr3) #Robot Safety

(Do not go to r3 if you sense a stop sign in r3)
∧ � �(πr4) #Robot Liveness

(Visit r4 infinitely often)

This specification is realizable via the approach in [7], and
the synthesized automaton is depicted in Fig. 2(b). However,
consider what happens when the robot is in state q0 (where
it is in r1), and sees a stop sign in r2. The robot will start
to move towards r3 (and state q1). Suppose that before the
robot has entered r3, the stop sign in r2 disappears but one
appears in r3. The robot will abort the discrete transition
(q0,q1) and start heading to r2 to take the transition (q0,q2)
instead. If the stop sign’s location changes faster than the
robot can move, the robot will be trapped in r1, because it
will keep changing its mind between the above two discrete



(a) Workspace for Example 2 (b) Synthesized automaton using approach in [7]

Fig. 2: Workspace and original automaton for Example 2. Negated sensor labels are omitted from the transitions for clarity.

Fig. 3: Excerpt of automaton synthesized for Example 1 with new
approach. Negated propositions on transitions are omitted for clarity.

transitions. This is therefore an example of a high-level task
that produces a controller under the synthesis approach of
[7], but whose physical execution does not accomplish the
specified behaviour because of an inadequate modeling of
the underlying physical system.

With the new discrete abstraction, task specification trans-
formation and execution paradigm presented in this paper, the
robot initial condition in the above specification changes to
πc

r1
, and the robot goal becomes � �(πc

r4
). This specification

(with the additional formulas introduced in Section V) is
unrealizable, and no automaton is obtained. As noted above,
this the safer, more desirable outcome, since there exists an
environment strategy that toggles the stop signs between r2
and r3 and prevents the robot from fulfilling the specification.

Recent work has tackled the question of analyzing spec-
ifications that are unrealizable [12]. Future research will
explain cases of unrealizability arising from the relative
execution times of the low-level controllers, and present
users with this information in a useful manner. An additional
direction to investigate is the automatic addition of environ-
ment assumptions to make the specification synthesizable.
For example, in Example 2, adding the environment liveness
� �(πc

r4
) results in a controller, by explicitly requiring the

environment to eventually let the robot through to r4.

VII. CONCLUSIONS

This paper describes a discrete abstraction, specification
transformation, synthesis algorithm and execution paradigm

that ensures correct continuous behaviors with immediate
reactivity and continued responsiveness. By explicitly model-
ing the activation and completion of the continuous low-level
controllers, the approach is able to handle actions of arbitrary
relative execution times, solving problems that escape previ-
ous approaches. The synthesis algorithm is changed to lower
the computational overhead of the controller construction.
Future work includes analyzing specifications that are unre-
alizable under the new paradigm due to the relative execution
times of the low-level controllers, and presenting users with
this information in a useful manner.

REFERENCES

[1] Amit Bhatia, Lydia E. Kavraki, and Moshe Y. Vardi. Sampling-based
motion planning with temporal goals. In ICRA, pages 2689–2696,
2010.

[2] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model
Checking. MIT Press, 1999.

[3] Cameron Finucane, Gangyuan Jing, and Hadas Kress-Gazit. LTLMoP:
Experimenting with language, temporal logic and robot control. In
IROS, pages 1988 – 1993, 2010.

[4] Karaman and Frazzoli. Sampling-based motion planning with de-
terministic µ-calculus specifications. In CDC, Shanghai, China,
December 2009.

[5] Marius Kloetzer and Calin Belta. A fully automated framework for
control of linear systems from temporal logic specifications. IEEE
Transaction on Automatic Control, 53(1):287–297, 2008.

[6] Hadas Kress-Gazit, Georgios E. Fainekos, and George J. Pappas.
Translating structured english to robot controllers. Advanced Robotics,
22(12):1343–1359, 2008.

[7] Hadas Kress-Gazit, Georgios E. Fainekos, and George J. Pappas.
Temporal-logic-based reactive mission and motion planning. IEEE
Transactions on Robotics, 25(6):1370–1381, 2009.

[8] Scott C. Livingston, Richard M. Murray, and Joel W. Burdick. Back-
tracking temporal logic synthesis for uncertain environments. In ICRA,
pages 5163–5170, 2012.

[9] Nir Piterman, Amir Pnueli, and Yaniv Sa’ar. Synthesis of reactive(1)
designs. In VMCAI, pages 364–380. Springer, 2006.

[10] Amir Pnueli and Roni Rosner. On the synthesis of a reactive module.
In POPL, pages 179–190, New York, NY, USA, 1989.

[11] Vasumathi Raman, Cameron Finucane, and Hadas Kress-Gazit. Tem-
poral logic robot mission planning for slow and fast actions. In IROS,
pages 251–256, 2012.

[12] Vasumathi Raman and Hadas Kress-Gazit. Explaining impossible
high-level robot behaviors. IEEE Transactions on Robotics, PP(99):1
–11, 2012.

[13] Tichakorn Wongpiromsarn, Ufuk Topcu, and Richard M. Murray.
Receding horizon control for temporal logic specifications. In Hybrid
Systems: Computation and Control, pages 101–110, 2010.


